

Project 609854‐EPP‐1‐2019‐1‐FR‐EPPKA2‐CBHE‐JP ‐ ASEAN FACTORI 4.0:

From Automation and Control Training to the Overall Roll‐out of Industry 4.0 across South East Asian Nations

Database Basics and

operations with MySQL

University of Health Sciences (UHS)

&

University of Ruse “Angel Kanchev” (UR)

2023

Project 609854‐EPP‐1‐2019‐1‐FR‐EPPKA2‐CBHE‐JP ‐ ASEAN FACTORI 4.0:

From Automation and Control Training to the Overall Roll‐out of Industry 4.0 across South East Asian Nations

BACKGROUND

The e‐textbook titled “Database Basics and operations with MySQL” is intended for students registered in

the University of Health Sciences (UHS) in Vientiane, Laos.

The purpose of this e‐textbook is to present to the students the basic concepts of the modern databases

and the most basic characteristics and operations of the Structured Query Language – SQL.

OBJECTIVES

The objectives are as follows:

‐ To present the concepts of data management and the basic the modern databases

‐ To introduce the students to the different data types and the data definition concepts

‐ To present the basic SQL operations and queries

‐ To introduce the students to MySQL Server and its characteristics

‐ To show to the students the basic steps for database design and the related rules

PROFILE OF THE INSTRUCTORS

Detailed agenda and instructor’s profile are shown below.

Name Affiliation

Mr. Lattanavong Thammabavong University of Health Sciences, Vientiane, Laos

Mr. Seksith Vangkonevilay University of Health Sciences, Vientiane, Laos

Ms. Noy Lovanhuk University of Health Sciences, Vientiane, Laos

Assoc. Prof. Dr. Nina Bencheva University of Ruse “Angle Kanchev”, Ruse, Bulgaria

Prof. Dr. Georgi Hristov University of Ruse “Angle Kanchev”, Ruse, Bulgaria

Assoc. Prof. Dr. Plamen Zahariev University of Ruse “Angle Kanchev”, Ruse, Bulgaria

This E‐textbook is a part of the ASEAN FACTORI 4.0 project, supported by ERASMUS+ Program of the European Union.

ASEAN FACTORI 4.0: From Automation and Control Training to the Overall Roll‐out of Industry 4.0 across South East Asian

Nations, reference number: 609854‐EPP‐1‐2019‐1‐FR‐EPPKA2‐CBHE‐JP.

Disclaimer: This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use

which may be made of the information contained therein.

Project 609854‐EPP‐1‐2019‐1‐FR‐EPPKA2‐CBHE‐JP ‐ ASEAN FACTORI 4.0:

From Automation and Control Training to the Overall Roll‐out of Industry 4.0 across South East Asian Nations

TABLE OT CONTENTS

Chapter 1. Introduction to Databases

1.1. Data Management. When Do We Need a Database?

1.2. Database Engines.
1.3. The Structured Query Language.
1.4. MySQL. Relational DB Management.

1.5. Table Relationships. Splitting data in tables.
1.6. Programmability. Customizing Database Behavior.

1.7. Summary

Chapter 2. Data Definition and Data Types

2.1. Data Types in MySQL Server. Numeric, String and Data Types.

2.2. Database Modeling. Data Definition using GUI Clients.

2.3. Basic SQL Queries. Data Definition using SQL.
2.4. Table Customization. Adding Rules, Constraints and Relationships.

2.5. Altering Tables. Changing Table Properties After Creation.
2.6. Deleting Data and Structures. Dropping and Truncating.
2.7. Summary

Chapter 3. Create, Retrieve, Update, Delete (CRUD) using SQL queries

3.1. Query Basics. SQL Introduction.
3.2. Retrieving Data. Using SQL SELECT.
3.3. Writing Data in Tables. Using SQL INSERT.

3.4. Modifying Existing Records. Using SQL UPDATE and DELETE.

3.5. Summary

Chapter 4. Functions and Wildcards in MySQL Server

4.1. Functions in MySQL Server

4.2. String Functions
4.3. Arithmetical Operators and Numeric Functions

4.4. Date Functions
4.5. Wildcards. Selecting results by partial match.

4.6. Summary

Chapter 5. Data Aggregation ‐ How to get data insights?

5.1. Grouping. Consolidating data based on criteria.
5.2. Aggregate Functions. COUNT, SUM, MAX, MIN, AVG…

5.3. Having. Using predicates while grouping.
5.4. Summary

Chapter 6. Table Relations ‐ Database Design and Rules

6.1. Database Design. Fundamental Concepts.

6.2. Table Relations. Relational Database Model in Action.

6.3. Retrieving Related Data. Using Simple JOIN statements.

6.4. Cascade Operations. Cascade Delete/Update.
6.5. Entity / Relationship Diagrams

6.6. Summary

Chapter 7. Joins, Subqueries and Indices ‐ Data Retrieval and Performance

7.1. Joins. Gathering Data From Multiple Tables.

7.2. Subqueries. Query Manipulation on Multiple Levels.

7.3. Indices. Clustered and Non‐Clustered Indices.
7.4. Summary

Chapter 8. Functions and Triggers – User‐defined Functions, Procedures, Triggers and Transactions

8.1. User‐Defined Functions. Encapsulating custom logic.

8.2. Stored Procedures. Sets of queries stored on DB Server.
8.3. What is a Transaction? Executing operations as a whole.

8.4. Triggers. Maintaining the integrity of the data.

8.5. Summary

Chapter 1.
Introduction to Databases

Database Basics and operations with MySQL

Data Management
When Do We Need a Database?

Database Basics and operations with MySQL Database Basics and operations with MySQL

Storage vs. Management

SALES RECEIPT

Date: 07/16/2016
Order#:[00315]

Customer: David Rivers

Product: Oil Pump

S/N: OP147-0623

Unit Price: 69.90

Qty: 1

Total: 69.90

00315 – 07/16/2016
David Rivers
Oil Pump (OP147-0623)
1 x 69.90

Database Basics and operations with MySQL Database Basics and operations with MySQL

Storage vs. Management

Order# Date Customer Product S/N Qty

00315 07/16/2016 David Rivers Oil Pump OP147-063 1

Database Basics and operations with MySQL Database Basics and operations with MySQL

• Storing data is not the primary reason to use a database

• Flat storage eventually runs into issues with

• Size

• Ease of updating

• Accuracy

• Security

• Redundancy

• Importance

Storage vs. Management

Database Basics and operations with MySQL Database Basics and operations with MySQL

• A database is an organized collection of related information

• It imposes rules on the contained data

• Access to data is usually provided by a "system" (DBMS) database
management

• Relational storage first proposed by Edgar Codd in 1970

Databases

Database Basics and operations with MySQL

• Relational Data Base Management System

• Database management

• It parses requests from the user and takes the appropriate action

• The user doesn't have direct access to the stored data

• Data is presented by relations – collection of tables related by common fields

• MS SQL Server, DB2, Oracle and MySQL

RDBMS

Database Basics and operations with MySQL

Database Engines

Client-Server Model

Database Basics and operations with MySQL

• SQL Server uses the Client-Server Model

Database Engine Flow

Clients Query Access

DataData

DatabaseEngine

Database Basics and operations with MySQL

Client-Server Model

TCP/IP

CLIENTS

DATABASE

Database Basics and operations with MySQL

Top Database Engines

Source: http://db-engines.com/en/ranking

Database Basics and operations with MySQL

The Structured Query Language
Query Components

Database Basics and operations with MySQL

• Programming language designed for managing data in a relational
database

• Developed at IBM in the early 1970s

• To communicate with the Engine we use SQL

Structured Query Language

Database Basics and operations with MySQL

• Subdivided into several language elements

• Queries

• Clauses

• Expressions

• Predicates

• Statements

Structured Query Language

UPDATE employees
SET salary = salary * 0.1
WHERE job_title = "Cashier";

Update clause Expression

Predicate

Statement

Database Basics and operations with MySQL

• Logically divided in four sections

• Data Definition – describe the structure of our data

• Data Manipulation – store and retrieve data

• Data Control – define who can access the data

• Transaction Control – bundle operations and allow rollback

Structured Query Language

Database Basics and operations with MySQL

SQL

DDL
CREATE
ALTER
DROP

TRUNCATE

DML
SELECT
INSERT
UPDATE
DELETE

DCL
GRANT
REVOKE

DENY

TCL
BEGIN TRAN

COMMIT
ROLLBACK

SAVE

Structured Query Language

Database Basics and operations with MySQL

MySQL
Relational DB Management

Database Basics and operations with MySQL

• Open-source relational database management system

• Used in many large-scale websites like including Google, Facebook, YouTube
etc.

• Works on many system platforms –

MAC OS, Windows, Linux

• Download MySQL Server

• Windows:

• Ubuntu/Debian:

MySQL

dev.mysql.com/downloads/windows/installer/

dev.mysql.com/downloads/repo/apt/

Database Basics and operations with MySQL

https://dev.mysql.com/downloads/windows/installer/5.7.html
https://dev.mysql.com/downloads/repo/apt/

• Logical Storage
• Instance

• Database/Schema

• Table

• Physical Storage
• Data files and Log files

• Data pages

MySQL Server Architecture

Database(Schema)

Table Table

Table

Database(Schema)

Database(Schema)

Data Logs

☰ ☰ ☰ ☰☰ ☰ ☰ ☰

Table

Instance

Database Basics and operations with MySQL

• The table is the main building block of any database

• Each row is called a record or entity

• Columns (fields) define the type of data they contain

Database Table Elements

customer_id first_name birthdate city_id

1 Brigitte 03/12/1975 101

2 August 27/05/1968 102

3 Benjamin 15/10/1988 103

4 Denis 07/01/1993 104Row

Column

Cell

Database Basics and operations with MySQL

Table Relationships
Splitting data in tables

Database Basics and operations with MySQL

Why Split Related Data?

order_id date customer product s/n price
00315 07/16/2016 David Rivers Oil Pump OP147-0623 69.90

00315 07/16/2016 David Rivers Accessory Belt AB544-1648 149.99

00316 07/17/2016 Sarah Thorne Wiper Fluid WF000-0001 99.90

00317 07/18/2016 Michael Walters Oil Pump OP147-0623 69.90

first last registered email
David Rivers 05/02/2016 drivers@mail.cx

Sarah Thorne 07/17/2016 sarah@mail.cx

Michael Walters 11/23/2015 walters_michael@mail.cx

email2
david@homedomain.cx

NULL

NULL

Empty records

Redundant information

Database Basics and operations with MySQL

• We split the data and introduce relationships between the tables to avoid
repeating information

• Connection via Foreign Key in one table pointing to the Primary Key in another

Related Tables

user_id first last registered
203 David Rivers 05/02/2016

204 Sarah Thorne 07/17/2016

205 Michael Walters 11/23/2015

user_id email
203 drivers@mail.cx

204 sarah@mail.cx

205 walters_michael@mail.cx

203 david@homedomain.cx

Primary Key Foreign Key

Database Basics and operations with MySQL

Entity Relationship (E/R) Diagrams

Database Basics and operations with MySQL

Programmability
Customizing Database Behavior

Begin

?

?

Database Basics and operations with MySQL

• Indices make data lookup faster
• Clustered – bound to the primary key, physically sorts data

• Non-Clustered – can be any field, references the primary index

• Structured as an ordered tree

Indices

PK

Data ☰ ☰ ☰ ☰ ☰ ☰ ☰

100-1990-99 200-299

Index

Links ☰ ☰ ☰ ☰ ☰ ☰ ☰

Range 2Range 1 Range 3

Database Basics and operations with MySQL

• Views are prepared queries for displaying sections of our data

• Evaluated at run time – they do not increase performance

Views

CREATE VIEW v_employee_names AS
SELECT e.employee_id,

e.first_name,
e.last_name

FROM uni_ruse.employees AS e

SELECT * FROM v_employee_names

Database Basics and operations with MySQL

• A database can further be customized with reusable code

• Procedures – carry out a predetermined action
• E.g. get all employees with salary above 35000

• Functions – receive parameters and return a result
• E.g. get the age of a person using their birthdate and current date

• Triggers – watch for activity in the database and react to it
• E.g. when a record is deleted, write it to an archive

Procedures, Functions and Triggers

Database Basics and operations with MySQL

Procedures

CREATE PROCEDURE udp_get_employees_salary_above_35000()
BEGIN

SELECT first_name, last_name FROM employees
WHERE salary > 35000;

END

CALL udp_get_employees_salary_above_35000

Database Basics and operations with MySQL

Functions

CREATEFUNCTION udf_get_age (dateValue DATE)
RETURNSINT

BEGIN
DECLAREresultINT;
SETresult = TIMESTAMPDIFF(YEAR, dateValue, NOW());
RETURNresult;
END

SELECTudf_get_age('1988-12-21');

Database Basics and operations with MySQL

• RDBMS stores and manages data

• We communicate with the DB engine via SQL

• MySQL is a multiplatform RDBMS using SQL

• Table relations reduce repetition and complexity

• Databases can be customized with functions and procedures

Summary

Database Basics and operations with MySQL

Chapter 2.
Data Definition and Data Types

Database Basics and operations with MySQL

Data Types in MySQL Server
Numeric, String and Data Types

Database Basics and operations with MySQL

• Numeric data types have certain range

• Their range can be changed if they are:

• Signed - represent numbers both in the positive and negative ranges

• Unsigned - represent numbers only in the positive range

• E.g. signed and unsigned INT:

Numeric Data Types

Signed Range Unsigned Range

Min Value Max Value Min Value Max Value

-2147483648 2147483648 0 4294967295

Database Basics and operations with MySQL

• INT [(M)] [UNSIGNED]
• TINYINT, SMALLINT, MEDIUMINT, BIGINT

• DOUBLE [(M, D)] [UNSIGNED]

• E.g. DOUBLE[5, 2] – 999.99

• DECIMAL [(M, D)] [UNSIGNED] [ZEROFILL]

Numeric Data Types

Digits stored for value
Decimals after
floating point

Database Basics and operations with MySQL

• String column definitions include attributes that specify the
character set or collation

• CHARACTER SET (Encoding)

• E.g. utf8, ucs2

• CHARACTER COLLATION – rules for encoding comparison

• E.g. latin1_general_cs, Traditional_Spanish_ci_ai etc.

• Set and collation can be defined at the database, table or column level

String Types

Determines the storage
of each character (single

or multiple bytes)

Determines the sorting
order and case-sensitivity

Database Basics and operations with MySQL

• ORDER BY with different collations

CHARACTER COLLATION - Example

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

Database Basics and operations with MySQL

• CHAR [(M)] - up to 30 characters

• VARCHAR(M) – up to 255 characters

• TEXT [(M)] – up to 65 535 characters
• TINYTEXT, MEDIUMTEXT, LONGTEXT

• BLOB - Binary Large OBject [(M)] - 65 535 (216 − 1) characters

• TINYBLOB, MEDIUMBLOB, LONGBLOB

Column name Column Type

title VARCHAR(CHAR)

content TEXT(LONGTEXT)

picture BLOB(LONGBLOB)

String Types

Database Basics and operations with MySQL

• DATE - for values with a date part but no time part

• TIME - for values with time but no date part

• DATETIME - values that contain both date and time parts

• TIMESTAMP - both date and time parts

Date Types

Column name Column Type

birthdate DATE

last_time_online TIMESTAMP

start_at TIME

deleted_on DATETIME

DATETIME and
TIMESTAMP have

different time
ranges

Database Basics and operations with MySQL

• MySQL retrieves values for a given date type in a standard output
format
• E.g. as a string in either 'YYYY-MM-DD' or 'YY-MM-DD'

Data Type Column Type

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

Date Types

Database Basics and operations with MySQL

Database Modeling
Data Definition using GUI Clients

Database Basics and operations with MySQL

• We will manage databases with HeidiSQL

• Enables us:
• To create a new database

• To create objects in the database (tables, stored procedures, relationships and
others)

• To change the properties of objects

• To enter records into the tables

Working with IDEs

Database Basics and operations with MySQL

• Select the instance Create new -> Database from the context
menu

Creating a New Database

Database Basics and operations with MySQL

• Right click on database Select Create new -> Table

Creating Tables

Set up table name

Add new record

Database Basics and operations with MySQL

• A Primary Key is used to uniquely identify and index records

• Click on row Create new index -> Primary from the context menu of
the desired row

Creating Tables

Database Basics and operations with MySQL

• Auto increment – on the "Default" field

Creating Tables

Database Basics and operations with MySQL

• We can add, modify and read records with GUI Clients

• To insert or edit a record, click inside the cell

Storing and Retrieving Data

Database Basics and operations with MySQL

Basic SQL Queries
Data Definition using SQL

CREATE TABLE people

(

id INT NOT NULL,

email VARCHAR(50) NOT NULL,

first_name VARCHAR(50),

last_name VARCHAR(50)

);

Database Basics and operations with MySQL

• We communicate with the database engine using SQL

• Queries provide greater control and flexibility

• To create a database using SQL:

• SQL keywords are conventionally capitalized

SQL Queries

CREATE DATABASE employees;

Database name

Database Basics and operations with MySQL

Table Creation in SQL

CREATE TABLE people

(

id INT NOT NULL,

email VARCHAR(50) NOT NULL,

first_name VARCHAR(50),

last_name VARCHAR(50)

);

Table name

Column name Data type

Custom properties

Database Basics and operations with MySQL

• Get all information from a table

• You can limit the columns and number of records

Retrieve Records in SQL

SELECT * FROM employees;

SELECT first_name, last_name FROM employees

LIMIT 5;

Table name

List of columns

Number of records
Database Basics and operations with MySQL

Table Customization
Adding Rules, Constraints and Relationships

Database Basics and operations with MySQL

• Primary Key

• Auto-Increment (Identity)

• Unique constraint – no repeating values in entire table

• Default value – if not specified (otherwise set to NULL)

Custom Column Properties

id INT NOT NULL PRIMARY KEY

id INT AUTO_INCREMENT PRIMARY KEY

email VARCHAR(50) UNIQUE

balance DECIMAL(10,2) DEFAULT 0

Database Basics and operations with MySQL

Altering Tables
Changing Table Properties After Creation

Database Basics and operations with MySQL

• A table can be changed using the keywords ALTER TABLE

• Add new column

Altering Tables Using SQL

ALTER TABLE employees

ADD salary DECIMAL;

ALTER TABLE employees;

Table name

Column name Data type

Database Basics and operations with MySQL

• Delete existing column

• Modify data type of existing column

Altering Tables Using SQL

ALTER TABLE people

MODIFY COLUMN email VARCHAR(100);

ALTER TABLE people

DROP COLUMN full_name;

Column name

Column name New data type
Database Basics and operations with MySQL

• Add primary key to existing column

• Add unique constraint

Altering Tables Using SQL

ALTER TABLE people

ADD CONSTRAINT pk_id

PRIMARY KEY (id);

Constraint name

Column name
(more than one for composite key)

ALTER TABLE people

ADD CONSTRAINT uq_email

UNIQUE (email)

Constraint name

Columns name(s)

Database Basics and operations with MySQL

• Set default value

Altering Tables Using SQL

ALTER TABLE people

ALTER COLUMN balance SET DEFAULT 0;

Column name

Default value

Database Basics and operations with MySQL

Deleting Data and Structures
Dropping and Truncating

Database Basics and operations with MySQL

• Deleting structures is called dropping
• You can drop keys, constraints, tables and entire databases

• Deleting all data in a table is called truncating

• Both of these actions cannot be undone – use with caution!

Deleting from Database

Database Basics and operations with MySQL

• To delete all the entries in a table

• To drop a table – delete data and structure

• To drop entire database

Dropping and Truncating

TRUNCATE TABLE employees;
Table name

DROP TABLE employees;
Table name

DROP DATABASE uni_ruse;
Database name

Database Basics and operations with MySQL

• To remove a constraining rule from a column
• Primary keys, value constraints and unique fields

• To remove DEFAULT value (if not specified, revert to NULL)

Dropping and Truncating

ALTER TABLE employess

DROP CONSTRAINT pk_id;

Table name

Constraint name

ALTER TABLE employess

ALTER COLUMN clients

DROP DEFAULT; Columns name

Table name

Database Basics and operations with MySQL

• Table columns have a fixed type

• We can use GUI Clients to create and customize tables

• SQL provides greater control

Summary

CREATE TABLE people

(

id INT NOT NULL,

email VARCHAR(50) NOT NULL,

first_name VARCHAR(50),

last_name VARCHAR(50)

);

Database Basics and operations with MySQL

Chapter 3.
Create, Retrieve, Update, Delete

(CRUD) using SQL queries

Database Basics and operations with MySQL

Query Basics
SQL Introduction

Database Basics and operations with MySQL

• Select first, last name and job title about employees:

• Select projects which start on 01-06-2003:

• Inserting data into table:

SQL Queries – Few Examples

SELECT first_name, last_name, job_title FROM employees;

INSERT INTO projects(name, start_date)
VALUES('Introduction to SQL Course', '2006-01-01');

SELECT * FROM projects WHERE start_date='2003-06-01';

Database Basics and operations with MySQL

• Update end date of specific projects:

• Delete specific projects:

SQL Queries – Few Examples

UPDATE projects
SET end_date = '2006-08-31'

WHERE start_date = '2006-01-01';

DELETE FROM projects
WHERE start_date = '2006-01-01';

Database Basics and operations with MySQL

Retrieving Data
Using SQL SELECT

Database Basics and operations with MySQL

Capabilities of SQL SELECT
Selection
Take a subset of the rows

Projection
Take a subset of the columns

Table 1 Table 2

Join
Combine tables by
some column

Database Basics and operations with MySQL

• Selecting all columns from the "departments" table

• Selecting specific columns

SELECT – Examples

SELECT * FROM departments;

SELECT department_id, name
FROM departments

department_id name manager_id

1 Engineering 12

2 Tool design 4

3 Sales 273

… … …

department_id name

1 Engineering

2 Tool design

3 Sales

… …

List of columns
(* for all)

Table name

Database Basics and operations with MySQL

• Aliases rename a table or a column heading

• You can shorten fields or clarify abbreviations

Column Aliases

SELECT employee_id AS id, first_name, last_name
FROM employees;

id first_name last_name

1 Guy Gilbert

2 Kevin Brown

… … …

SELECT c.duration,
c.acg AS 'Access Control Gateway'

FROM calls AS c;

Display name

Database Basics and operations with MySQL

• You can concatenate column names or strings using the concat()
function

• String literals are enclosed in ['](single quotes)

• Table and column names containing special symbols use [`] (backtick)

Concatenation

SELECT concat(`first_name`,' ',`last_name`) AS 'full_name',
`job_title` as 'Job Title',
`id` AS 'No.'

FROM `employees`;

Database Basics and operations with MySQL

• Find information about all employees, listing their:
• Full Name

• Job title

• Salary

• Use concatenation to display first and last names as one field

• Note: Query Hospital database

Problem: Employee Summary

Database Basics and operations with MySQL

Employee Summary - Solution

SELECT concat(`first_name`,' ',`last_name`) AS
'full_name',
`job_title` as 'job_title',

`salary` AS `salary`
FROM `employees` WHERE salary >= 1000;

Concatenation

Column alias

Database Basics and operations with MySQL

Filtering the Selected Rows
• Use DISTINCT to eliminate duplicate results

• You can filter rows by specific conditions using the WHERE clause

• Other logical operators can be used for greater control

SELECT `last_name`, `department_id`
FROM `employees`
WHERE `department_id` = 1;

SELECT `last_name`, `salary`
FROM `employees`
WHERE `salary` <= 20000;

SELECT DISTINCT `department_id`
FROM `employees`;

Database Basics and operations with MySQL

Other Comparison Conditions
• Conditions ca be combined using NOT, OR, AND and brackets

• Using BETWEEN operator to specify a range:

• Using IN / NOT IN to specify a set of values:

SELECT `last_name`, `salary`FROM `employees`
WHERE `salary` BETWEEN 20000 AND 22000;

SELECT `first_name`, `last_name`, `manager_id`
FROM `employees`
WHERE `manager_id` IN (109, 3, 16);

SELECT `last_name` FROM `employees`
WHERE NOT (`manager_id` = 3 OR `manager_id` = 4);

Database Basics and operations with MySQL

• NULL is a special value that means missing value
• Not the same as 0 or a blank space

• Checking for NULL values

Comparing with NULL

SELECT `last_name`, `manager_id`
FROM `employees`
WHERE `manager_id` IS NULL;

SELECT `last_name`, `manager_id`
FROM `employees`
WHERE `manager_id` IS NOT NULL;

SELECT `last_name`, `manager_id`
FROM `employees`
WHERE `manager_id` = NULL; This is always false!

Database Basics and operations with MySQL

Sorting with ORDER BY

• Sort rows with the ORDER BY clause
• ASC: ascending order, default

• DESC: descending order

SELECT `last_name`, `hire_date`
FROM `employees`
ORDER BY `hire_date`;

LastName HireDate

Gilbert 1998-07-31

Brown 1999-02-26

Tamburello 1999-12-12

… …

SELECT `last_name`, `hire_date`
FROM `employees`
ORDER BY `hire_date` DESC;

LastName HireDate

Valdez 2005-07-01

Tsoflias 2005-07-01

Abbas 2005-04-15

… …

ASC is the default
sorting order

Database Basics and operations with MySQL

• Views are virtual tables made from others tables, views or joins
between them

• Usage:

• To simplify writing complex queries

• To limit access to data for certain users

Views

Database Basics and operations with MySQL

Views

Table 2

Column 1 Column 2 Column 3

Table 1

Column 1 Column 2 Column 3

v_table1_table2

Column 1 Column 2 Column 3

Database Basics and operations with MySQL

• Get employee names and salaries, by department

Views - Example

CREATE VIEW `v_hr_result_set` AS
SELECT

CONCAT(`first_name`,' ',`last_name`) AS 'Full Name', `salary`
FROM `employees` ORDER BY `department_id`;

SELECT * FROM `v_hr_result_set`;

Database Basics and operations with MySQL

• Create a view that selects all information about the top paid employee
• Name the view v_top_paid_employee

• Note: Query Geography database

Problem: Top Paid Employee

SELECT * FROM `v_top_paid_employee`;

Database Basics and operations with MySQL

Solution: Top Paid Employee

CREATE VIEW `v_top_paid_employee`
AS

SELECT * FROM `employees`
ORDER BY `salary` DESC LIMIT 1;

Greatest value firstSorting column

Database Basics and operations with MySQL

Writing Data in Tables
Using SQL INSERT

Database Basics and operations with MySQL

• The SQL INSERT command

• Bulk data can be recorded in a single query, separated by comma

Inserting Data

INSERT INTO `towns` VALUES (33, 'Paris');

Values for
all columns

INSERT INTO `employees_projects`
VALUES (229, 1),

(229, 2),
(229, 3), …

INSERT INTO projects(`name`, `start_date`)
VALUES ('Reflective Jacket', NOW())

Specify
columns

Database Basics and operations with MySQL

• You can use existing records to create a new table

• Or into an existing table

INSERT INTO projects(name, start_date)
SELECT CONCAT(name,' ', ' Restructuring'), NOW()
FROM departments;

CREATE TABLE `customer_contacts`
AS SELECT `customer_id`, `first_name`, `email`, `phone`
FROM `customers`;

New table name

Existing source
List of columns

Database Basics and operations with MySQL

Inserting Data

Modifying Existing Records
Using SQL UPDATE and DELETE

Database Basics and operations with MySQL

• Deleting specific rows from a table

• Note: Don’t forget the WHERE clause!

• Delete all rows from a table (TRUNCATE works faster than DELETE)

Deleting Data

DELETE FROM `employees`
WHERE `employee_id` = 1;

TRUNCATE TABLE users;

Condition

Database Basics and operations with MySQL

Updating Data
• The SQL UPDATE command

• Note: Don’t forget the WHERE clause!

UPDATE `employees`
SET `last_name` = 'Brown'

WHERE `employee_id` = 1;

UPDATE `employees`
SET `salary` = `salary` * 1.10,

`job_title` = CONCAT('Senior',' ', `job_title`)
WHERE `department_id` = 3;

New values

Database Basics and operations with MySQL

•We can easy manipulate our database with SQL queries

•Queries provide a flexible and powerful
method to manipulate records

Summary

SELECT *
FROM `projects`
WHERE `start_date` = '2006-01-01';

Database Basics and operations with MySQL

Chapter 4.
Functions and Wildcards

in MySQL Server

Database Basics and operations with MySQL

Functions in MySQL Server

Database Basics and operations with MySQL

• String Functions – for manipulating text, both from table values or
user input
• E.g. concatenate column values

• Math Functions – calculations and working with aggregate data
• E.g. perform geometry and currency operations

• Date and Time Functions
• E.g. find length of timespan

• Other

SQL Functions

Database Basics and operations with MySQL

String Functions
Database Basics and operations with MySQL

• SUBSTRING() – extracts part of a string

String Functions

SUBSTRING(String, Position)

SUBSTRING(String, Position, Length)

SUBSTRING(String FROM Position FOR Length)

Database Basics and operations with MySQL

• Get short summary of article

SUBSTRING - Example

SELECT `article_id`, `author`, `content`,
SUBSTRING(`content`, 1, 200) AS 'Summary'

FROM `articles`;

Database Basics and operations with MySQL

• Write a query to find all book titles that start with "The"
• Query book_library database

Problem: Find Book Titles

Database Basics and operations with MySQL

Solution: Find Book Titles
SELECT title FROM books WHERE

SUBSTRING(title, 1, 3) = "The";

Database Basics and operations with MySQL

• REPLACE – replaces specific string with another
• Performs a case-sensitive match

String Functions

REPLACE(String, Pattern, Replacement)

Field from table

String to replace

Replacement
pattern

Database Basics and operations with MySQL

• Censor the word blood from album names

REPLACE - Example

SELECT REPLACE(`title`, 'blood', '*****')
AS 'Title'

FROM `album`;

Database Basics and operations with MySQL

• Write a query to find all book titles that start with "The" and replace
the substring with "***"
• Query book_library database

Problem: Replace Titles

Database Basics and operations with MySQL

Solution: Replace Titles

UPDATE books
SET title = REPLACE(title,"The","***")
WHERE SUBSTRING(title, 1, 3) = "The";
SELECT title from books
WHERE SUBSTRING(title, 1, 3) = "***";

Database Basics and operations with MySQL

• LTRIM & RTRIM – remove spaces from either side of string

• CHAR_LENGTH – count number of characters

• LENGHT – get number of used bytes (double for Unicode)

String Functions

CHAR_LENGTH(String)

LENGTH(String)

LTRIM(String)

RTRIM(String)

Database Basics and operations with MySQL

• LEFT & RIGHT – get characters from beginning or end of string

• Example: name shorthand (first 3 letters)

String Functions

LEFT(String, Count)

RIGHT(String, Count)

SELECT `id`, `start`,

LEFT(`name`, 3) AS 'Shorthand'

FROM `games`;

Database Basics and operations with MySQL

• LOWER & UPPER – change letter casing

• REVERSE – reverse order of all characters in string

• REPEAT – repeat string

String Functions

LOWER(String)

UPPER(String)

REVERSE(String)

REPEAT(String, Count)

Database Basics and operations with MySQL

• LOCATE – locate specific pattern (substring) in string

• INSERT – insert substring at specific position

String Functions

LOCATE(Pattern, String,[Position])

INSERT(String, Position, Length, Substring)

If omitted, begins at 1

Number of characters
to delete

Database Basics and operations with MySQL

Arithmetical Operators and Numeric
Functions
Database Basics and operations with MySQL

• Supported common arithmetic operators

Arithmetical Operators

Name Description

DIV Integer division

/ Division operator

- Minus Operator

%, MOD Modulo operator

+ Addition operator

* Multiplication operator

- (arg) Change sign of argument

Database Basics and operations with MySQL

• Used primarily for numeric manipulation and/or mathematical calculations

• PI – get the value of Pi (15 –digit precision)

• ABS – absolute value

Numeric Functions

SELECT PI() +0.000000000000000

ABS(Value)

Database Basics and operations with MySQL

• SQRT – square root

• POW – raise value to desired exponent

Numeric Functions

SQRT(Value)

POW(Value, Exponent)

Database Basics and operations with MySQL

• CONV – Converts numbers between different number bases

• ROUND – obtain desired precision

• FLOOR & CEILING – return the nearest integer

Math Functions

ROUND(Value, Precision)

CONV(Value,from_base,to_base)

Can be negative

FLOOR(Value)

CEILING(Value)

Database Basics and operations with MySQL

• SIGN – returns +1, -1 or 0, depending on value sign

• RAND – get a random value in range [0,1]
• If Seed is not specified, one is assigned at random

Math Functions

SIGN(Value)

RAND()

RAND(Seed)

Database Basics and operations with MySQL

Date Functions
Database Basics and operations with MySQL

• EXTRACT – extract a segment from a date as an integer

• Part can be any part and format of date or time

• For a full list, see the official documentation

Date Functions

EXTRACT(Part FROM Date)

year, %Y, %y

month, %M, %m

day, %w, %D

YEAR(Date)

MONTH(Date)

DAY(Date)

Database Basics and operations with MySQL

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html

• TIMESTAMPDIFF – find difference between two dates

• Part can be any part and format of date or time

Date Functions

TIMESTAMPDIFF(Part, FirstDate, SecondDate)

Database Basics and operations with MySQL

• Show employee experience

Date Functions - Example

SELECT `employee_id`, `first_name`, `last_name`,

TIMESTAMPDIFF(year, `hire_date`, '2017-05-31')

AS 'Years In Service'

FROM `employees`;

Database Basics and operations with MySQL

• Write a query to calculate how many days have authors lived
• Use TIMESTAMPDIFF

• Query book_library database

Problem: Days Lived

Database Basics and operations with MySQL

Days Lived - Solution

SELECT concat(first_name, ' ', last_name) as 'Full Name', TIMESTAMPDIFF(DAY,
born, died) as 'Days Lived'
FROM authors;

Database Basics and operations with MySQL

• DATE_FORMAT – formats the date value according to the format

• NOW – obtain current date and time

Date Functions

SELECT DATE_FORMAT('2017/05/31', '%Y %b %D') AS 'Date';

SELECT NOW();

Database Basics and operations with MySQL

Wildcards
Selecting results by partial match

Database Basics and operations with MySQL

• Used to substitute any other character(s) in a string
• '%' - represents zero, one, or multiple characters

• '_' - represents a single character

• Can be used in combinations

• Used with LIKE operator in a WHERE clause
• Similar to Regular Expressions

Wildcards

Database Basics and operations with MySQL

• Find any values that start with "a"

• Find any values that have "r" in second position

• Finds any values that starts with "a" and ends with "o"

WHERE CustomerName LIKE 'a%';

WHERE CustomerName LIKE '_r%';

WHERE ContactName LIKE 'a%o';

Database Basics and operations with MySQL

Wildcards - Examples

• Supported characters also include:
• \ – specify prefix to treat special characters as normal

• [charlist] – specifying which characters to look for
• [!charlist] – excluding characters

Wildcard Characters

SELECT * FROM `customers`

WHERE `city` LIKE '[a-c]%';

"a", "b", or "c"

Database Basics and operations with MySQL

• Write a query to retrieve information about the titles of all Harry
Potter books
• Use Wildcards

• Query book_library database

Problem: Harry Potter Books

Database Basics and operations with MySQL

Harry Potter Books - Solution

SELECT title FROM books
WHERE title LIKE 'Harry Potter%';

Database Basics and operations with MySQL

• REGEXP - pattern matching using regular expressions

Using Regular Expression

SELECT `employee_id`, `first_name`, `last_name`

FROM `employees`

WHERE `first_name` REGEXP '^\[^K\]{3}\$';

Regular expression

Database Basics and operations with MySQL

• MySQL Server provides various built-in
functions

• Numerical functions

• String functions

• Using Wildcards, we can obtain results
by partial string matches

• Regular expressions

Summary

Database Basics and operations with MySQL

Chapter 5.
Data Aggregation - How to get

data insights?

Database Basics and operations with MySQL

Grouping
Consolidating data based on criteria

Database Basics and operations with MySQL

• Grouping allows taking data into separate groups based on a
common property

Grouping

Grouping column

Can be
aggregated

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000
Database Basics and operations with MySQL

•With GROUP BY you can get each separate group and use an
"aggregate" function over it (like Average, Min or Max):

SELECT e.`job_title`, count(employee_id)
FROM `employees` AS e

GROUP BY e.`job_title`;

GROUP BY

Grouping
Columns

Database Basics and operations with MySQL

•With DISTINCT you will get all unique values:

DISTINCT

SELECT DISTINCT e.`job_title`
FROM `employees` AS e;

Unique
Values

Database Basics and operations with MySQL

•Write a query which prints the total sum of salaries for each
department in the uni_ruse database

• Order them by DepartmentID (ascending)

Problem: Departments Total Salaries

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

department_id total_salary

1 20,000

2 30,000

3 15,000

Database Basics and operations with MySQL

SELECT e.`department_id`,
SUM(e.`salary`) AS 'Total Salary'

FROM `employees` AS e
GROUP BY e.`department_id`
ORDER BY e.`department_id`;

Solution: Departments Total Salaries

Grouping
Column

Grouping
Columns

New Column Alias

Table Alias

Database Basics and operations with MySQL

Aggregate Functions
COUNT, SUM, MAX, MIN, AVG…

Database Basics and operations with MySQL

• Used to operate over one or more groups performing data analysis on every
one
• MIN, MAX, AVG, COUNT etc.

• They usually ignore NULL values

Aggregate Functions

SELECT e.`department_id`,
MIN(e.`salary`) AS 'MinSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

Database Basics and operations with MySQL

• COUNT - counts the values (not nulls) in one or more columns based
on grouping criteria

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

department_name SalaryCount

Database Support 2

Application Support 3

Software Support 1

Database Basics and operations with MySQL

COUNT

• Note that we when we use COUNT we will ignore any employee with
NULL salary.

SELECT e.`department_id`,
COUNT(e.`salary`) AS 'Salary Count'

FROM `employees` AS e
GROUP BY e.`department_id`;

COUNT Syntax

Grouping
Column

Grouping
Columns

New Column Alias

Database Basics and operations with MySQL

SUM

• SUM - sums the values in a column

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

department_name total_salary

Database Support 20,000

Application Support 30,000

Software Support 15,000

Database Basics and operations with MySQL

• If any department has no salaries NULL will be displayed.

SELECT e.`department_id`,
SUM(e.`salary`) AS 'TotalSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

SUM Syntax

Grouping
Column

Grouping
Columns

Table Alias

New Column Alias

Database Basics and operations with MySQL

• MAX - takes the maximum value in a column.

MAX

department_name max_salary

Database Support 15,000

Application Support 15,000

Software Support 15,000

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

Database Basics and operations with MySQL

SELECT e.`department_id`,
MAX(e.`salary`) AS 'MaxSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

MAX Syntax
Grouping
Column

Grouping
Columns

Table Alias

New Column Alias

Database Basics and operations with MySQL

MIN

• MIN takes the minimum value in a column.

department_name min_salary

Database Support 5,000

Application Support 5,000

Software Support 15,000

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

Database Basics and operations with MySQL

SELECT e.`department_id`,
MIN(e.`salary`) AS 'MinSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

MIN Syntax

Grouping
Column

Grouping
Columns

Table Alias

New Column Alias

Database Basics and operations with MySQL

AVG

• AVG calculates the average value in a column.

department_name average_salary

Database Support 10,000

Application Support 10,000

Software Support 15,000

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

Database Basics and operations with MySQL

SELECT e.`department_id`,
AVG(e.`salary`) AS 'AvgSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

AVG Syntax
Grouping
Column

Grouping
Columns

Table Alias

New Column Alias

Database Basics and operations with MySQL

Having
Using predicates while grouping

Database Basics and operations with MySQL

• The HAVING clause is used to filter data based on aggregate values.

• We cannot use it without grouping before that

• Any Aggregate functions in the "HAVING" clause and in the
"SELECT" statement are executed one time only

• Unlike HAVING, the WHERE clause filters rows before the aggregation

Having Clause

Database Basics and operations with MySQL

• Filter departments which have total salary more or equal 15,000.

Having Clause: Example

Aggregated value

employe
e

department_name salary Total
Salary

Adam Database Support 5,000
20,000

John Database Support 15,000

Jane Application Support 10,000

10,000George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000 15,000

department_name average_salary

Database Support 10,000

Software Support 15,000

Database Basics and operations with MySQL

SELECT e.`department_id`,
SUM(e.salary) AS 'TotalSalary'

FROM `employees` AS e
GROUP BY e.`department_id`
HAVING `TotalSalary`< 250000;

HAVING Syntax

Grouping
Column

Aggregate
Function

Grouping
Columns

New
Column Alias

Having
Predicate

Database Basics and operations with MySQL

• Grouping

• Aggregate Functions

• Having

Summary

SELECT
 SUM(e.`salary) AS 'TotalSalary'
FROM `employees` AS e
GROUP BY e.`department_id`
HAVING SUM(e.`salary`) < 250000;

Database Basics and operations with MySQL

Chapter 6.
Table Relations - Database Design

and Rules

Database Basics and operations with MySQL

Database Design
Fundamental Concepts

Database Basics and operations with MySQL

Steps in Database Design

1
Identification of

the entities

2
Defining table

columns

3
Defining primary

keys

4
Modeling

relationships

5
Defining

constraints

6
Filling test data

Database Basics and operations with MySQL

• Entity tables represent objects from the real world
• Most often they are nouns in the specification

• For example:

• Entities: Student, Course, Town

Identification of Entities

We need to develop a system that stores information about

students, which are trained in various courses. The courses

are held in different towns. When registering a new student

the following information is entered: name, faculty number,

photo and date.

Database Basics and operations with MySQL

• Columns are clarifications for the entities in the text of the
specification, for example:

• Students have the following characteristics:
• Name, faculty number, photo, date of enlistment and a list of courses they

visit

Identification of the Columns

We need to develop a system that stores information about

students, which are trained in various courses. The courses

are held in different towns. When registering a new student

the following information is entered: name, faculty number,

photo and date.

Database Basics and operations with MySQL

• Always define an additional column for the primary key
• Don't use an existing column

• Must be an integer number

• Must be declared as a PRIMARY KEY

• Use auto_increment to implement auto-increment

• Put the primary key as a first column

• Exceptions
• Entities that have well known ID, e.g. countries (BG, DE, US) and currencies

(USD, EUR, BGN)

How to Choose a Primary Key?

Database Basics and operations with MySQL

• Relationships are dependencies between the entities:

• "Students are trained in courses" – many-to-many relationship.

• "Courses are held in towns" – many-to-one (or many-to-many) relationship

Identification of Relationships

We need to develop a system that stores information about

students, which are trained in various courses. The courses are

held in different towns. When registering a new student the

following information is entered: name, faculty number, photo

and date.

Database Basics and operations with MySQL

Table Relations
Relational Database Model in Action

Database Basics and operations with MySQL

9

• Relationships between tables are based on interconnections:
PRIMARY KEY / FOREIGN KEY

Relationships

countries
towns

Primary key Foreign key Primary key

Relationships

id name country_id

1 Sofia 1

2 Varna 1

3 Munich 2

4 Berlin 2

5 Moscow 3

id name

1 Bulgaria

2 Germany

3 Russia

Database Basics and operations with MySQL

• The foreign key is an identifier of a record located in another
table (usually its primary key)

• By using relationships we avoid repeating data in the database

• Relationships have multiplicity:
• One-to-many – e.g. country / towns
• Many-to-many – e.g. student / course
• One-to-one – e.g. example driver / car

Relationships

Database Basics and operations with MySQL

One-to-Many/Many-to-One

Mountains Peaks

Primary key Primary key Foreign key

Relation

mountain_id name

1 Causasus

peak_id mountain_id

61 1

66 1

Database Basics and operations with MySQL

CREATE TABLE mountains(
 mountain_id INT PRIMARY KEY,
 mountain_name VARCHAR(50)
);
CREATE TABLE peaks(
 peak_id INT PRIMARY KEY,
 mountain_id INT,

CONSTRAINT fk_peaks_mountains
FOREIGN KEY (mountain_id)
REFERENCES mountains(mountain_id)

);

Setup
Primary key

Foreign Key

Table Peaks

Database Basics and operations with MySQL

CONSTRAINT fk_peaks_mountains
FOREIGN KEY (mountain_id)
REFERENCES mountains(mountain_id);

Foreign Key

Constraint
Name

Primary KeyReferent Table

Foreign Key

Database Basics and operations with MySQL

Many-to-Many

employees projects

employees_projects

Primary key
Primary key

Mapping table

employee_id name

1 …

40 …

employee_id project_id

1 4

40 24

project_id name

4 …

24 …

Database Basics and operations with MySQL

CREATE TABLE employees(
employee_id INT PRIMARY KEY,
employee_name VARCHAR(50)

);

Setup

Table Employees

CREATE TABLE projects(
project_id INT PRIMARY KEY,
project_name VARCHAR(50)

);

Table Projects

Database Basics and operations with MySQL

CREATE TABLE employees_projects(
employee_id INT,
project_id INT,

 CONSTRAINT pk_employees_projects
 PRIMARY KEY(employee_id, project_id),
 CONSTRAINT fk_employees_projects_employees
 FOREIGN KEY(employee_id)
 REFERENCES employees(employee_id),
 CONSTRAINT fk_employees_projects_projects
 FOREIGN KEY(project_id)
 REFERENCES projects(project_id)
);

Setup
Mapping Table

Foreign Key

Foreign Key

Database Basics and operations with MySQL

Primary Key

One-to-One

cars drivers

Primary key
Foreign key

Primary key

Relation

car_id driver_id

1 166

2 102

driver_id driver_name

166 …

102 …

Database Basics and operations with MySQL

CREATE TABLE drivers(
driver_id INT PRIMARY KEY,
driver_name VARCHAR(50)

);

CREATE TABLE cars(
car_id INT PRIMARY KEY,
driver_id INT UNIQUE,
CONSTRAINT fk_cars_drivers
FOREIGN KEY (driver_id)
REFERENCES drivers(driver_id)

);

Setup
Primary key

Foreign Key

One driver
per car

Database Basics and operations with MySQL

CONSTRAINT fk_cars_drivers
FOREIGN KEY (driver_id)
REFERENCES drivers(driver_id)

Foreign Key

Primary Key

Foreign Key

Constraint
Name

Referent Table

Database Basics and operations with MySQL

Retrieving Related Data
Using Simple JOIN statements

Table 1 Table 2

Database Basics and operations with MySQL

• Table relations are useful when combined with JOINS

• With JOINS we can get data from two tables simultaneously
• JOINS require at least two tables and a "join condition"

• Example:

Joins

SELECT * FROM table_a
JOIN table_b ON

table_b.common_column = table_a.common_column

Join Condition

Select from Tables

Database Basics and operations with MySQL

• Report all peaks for "Rila" mountain.
• Report includes mountain's name, peak's name and also peak's elevation

• Peaks should be sorted by elevation descending

• Use database "Geography".

Problem: Peaks in Rila

Database Basics and operations with MySQL

Solution: Peaks in Rila

SELECT m.mountain_range, p.peak_name, p.elevation
FROM peaks AS p
JOIN mountains AS m ON m.id = p.mountain_id
WHERE m.mountain_range = 'Rila'
ORDER BY p.elevation DESC;

Cross Table Selection

Join Condition

Sort

Database Basics and operations with MySQL

Cascade Operations
Cascade Delete/Update

Database Basics and operations with MySQL

• Cascading allows when a change is made to certain entity, this change to apply
to all related entities

Definition

orders order_items

Primary key Primary key
Foreign key

Cascade delete

order_id order_name

1 …

22 …

item_id order_id

4 1

24 22

87 1

Database Basics and operations with MySQL

• CASCADE can be either DELETE or UPDATE.

• Use CASCADE DELETE when:
• The related entities are meaningless without the "main" one

• Do not use CASCADE DELETE when:
• You make "logical delete"

• You preserve history

• Keep in mind that in more complicated relations it won't work with circular references

CASCADE DELETE

Database Basics and operations with MySQL

• Use CASCADE UPDATE when:
• The primary key is NOT identity (not auto-increment) and therefore it can be

changed

• Best used with UNIQUE constraint

• Do not use CASCADE UPDATE when:
• The primary is identity (auto-increment)

• Cascading can be avoided using triggers or procedures

CASCADE UPDATE

Database Basics and operations with MySQL

CREATE TABLE drivers(
driver_id INT PRIMARY KEY,
driver_name VARCHAR(50)

);

CREATE TABLE cars(
car_id INT PRIMARY KEY,
driver_id INT,
CONSTRAINT fk_car_driver FOREIGN KEY(driver_id)
REFERENCES drivers(driver_id) ON DELETE CASCADE

);

Foreign Key Delete Cascade

Table Drivers

Foreign Key

Table Cars

Database Basics and operations with MySQL

CREATE TABLE drivers(
driver_id INT PRIMARY KEY,
driver_name VARCHAR(50)

);

CREATE TABLE cars(
car_id INT PRIMARY KEY,
driver_id INT,
CONSTRAINT fk_car_driver FOREIGN KEY(driver_id)
REFERENCES drivers(driver_id) ON UPDATE CASCADE

);

Foreign Key Update Cascade
Table Drivers

Foreign Key

Table Cars

Database Basics and operations with MySQL

E/R Diagrams
Entity / Relationship Diagrams

Database Basics and operations with MySQL

• Relational schema of a DB is the collection of:
• The schemas of all tables

• Relationships between the tables

• Any other database objects (e.g. constraints)

• The relational schema describes the structure of the database
• Doesn't contain data, but metadata

• Relational schemas are graphically displayed in Entity / Relationship
diagrams (E/R Diagrams)

Relational Schema

Database Basics and operations with MySQL

E/R Diagram

• Click on "Database" then select "Reverse Engineer"

Database Basics and operations with MySQL

E/R Diagram

Database Basics and operations with MySQL

E/R Diagram

Database Basics and operations with MySQL

• We design databases by specification entities and their
characteristics

• Two types of relations:

• One-to-many

• Many-to-many

• We visualize relations via E/R diagrams

Summary

Database Basics and operations with MySQL

Chapter 7.
Joins, Subqueries and Indices -

Data Retrieval and Performance

Database Basics and operations with MySQL

JOINS
Gathering Data From Multiple Tables

Database Basics and operations with MySQL

Data from Multiple Tables

• Sometimes you need data from several tables:

Employees
department_id department_name

3 Sales

4 Marketing

5 Purchasing

Departments

employee_name department_id department_name

Edward 3 Sales

employee_name department_id

Edward 3

John NULL

Database Basics and operations with MySQL

Cartesian Product
• This will produce Cartesian product:

• The result:

SELECT last_name, name AS department_name
FROM employees, departments;

last_name department_name

Gilbert Engineering

Brown Engineering

… …

Gilbert Sales

Brown Sales

Database Basics and operations with MySQL

Cartesian Product

• Each row in the first table is paired with all the rows in the second
table
• When there is no relationship defined between the two tables

• Formed when:
• A join condition is omitted

• A join condition is invalid

• To avoid, always include a valid JOIN condition

Database Basics and operations with MySQL

• JOINS – used to collect data from two or more tables

• Types:

JOINS

INNER JOIN LEFT JOIN

CROSS JOIN

RIGHT JOIN

OUTER
(UNION)
JOIN

Database Basics and operations with MySQL

Tables

id name course_id

1 Alice 1

2 Michael 1

3 Caroline 2

4 David 5

5 Emma NULL

id name

1 HTML5

2 CSS3

3 JavaScript

4 PHP

5 MySQL

Database Basics and operations with MySQL

▪ Produces a set of records which match in both tables

INNER JOIN

SELECT students.name, courses.name
FROM students
INNER JOIN courses
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

David MySQL

Join Conditions

Database Basics and operations with MySQL

▪ Matches every entry in left table regardless of match in the right

LEFT JOIN

SELECT students.name, courses.name
FROM students
LEFT JOIN courses
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

David MySQL

Emma NULLJoin Conditions

Database Basics and operations with MySQL

▪ Matches every entry in right table regardless of match in the left

RIGHT JOIN

SELECT students.name, courses.name
FROM students
RIGHT JOIN courses
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

NULL JavaScript

NULL PHP

David MySQL

Join Conditions

Database Basics and operations with MySQL

OUTER (FULL JOIN)

▪ Returns all records in both tables regardless of any match

▪ Less useful than INNER, LEFT or RIGHT JOINs and it's not
implemented in MySQL

▪ We can use UNION of a LEFT and RIGHT JOIN

Database Basics and operations with MySQL

UNION of LEFT and RIGHT JOIN

SELECT students.name, courses.name
FROM students
LEFT JOIN courses
ON students.course_id = courses.id

UNION

SELECT students.name, courses.name
FROM students
RIGHT JOIN courses
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

David MySQL

Emma NULL

NULL JavaScript

NULL PHP

Database Basics and operations with MySQL

CROSS JOIN
▪ Produces a set of associated rows of two tables

▪ Multiplication of each row in the first table with each in
second

▪ The result is a Cartesian product, when there's no condition in
the WHERE clause

SELECT * FROM courses AS c
CROSS JOIN students AS s;

No Join Conditions
Database Basics and operations with MySQL

Cross Join
id name course_id

1 Alice 1

2 Michael 1

3 Caroline 2

4 David 5

5 Emma NULL

id name

1 HTML5

2 CSS3

3 JavaScript

4 PHP

5 MySQL

Courses Students

course_id course_name student_id student_name

1 HTML5 1 Alice

1 HTML5 2 Michael

1 HTML5 3 Caroline

… … … …

Result

Database Basics and operations with MySQL

Join Overview

Relation

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

18 Accounting

22 Engineering

Database Basics and operations with MySQL

Join Overview: INNER JOIN

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

18 Accounting

22 Engineering

Database Basics and operations with MySQL

Join Overview: LEFT JOIN

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

15 Shipping And
Receiving

18 Accounting

22 Engineering

NULL NULL

Database Basics and operations with MySQL

Join Overview: RIGHT JOIN

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

18 Accounting

22 Engineering

Database Basics and operations with MySQL

Problem: Managers

• Get information about the first 5 managers in the “uni_ruse" database
• id

• full_name

• department_id

• department_name

Database Basics and operations with MySQL

Solution: Managers

SELECT e.employee_id, CONCAT(first_name, " ",
last_name) AS `full_name`, d.department_id, d.name
FROM employees AS e
RIGHT JOIN departments AS d
ON d.manager_id = e.employee_id
ORDER BY e.employee_id LIMIT 5;

Database Basics and operations with MySQL

Subqueries
Query Manipulation on Multiple Levels

☰

☰

☰

Database Basics and operations with MySQL

Subqueries

• Subqueries – SQL query inside a larger one

• Can be nested in SELECT, INSERT, UPDATE, DELETE
• Usually added within a WHERE clause

SELECT * FROM students
WHERE course_id = 1;

id name course_id

1 Alice 1

2 Michael 1

Subquery

Database Basics and operations with MySQL

Problem: Higher Salary

• Count the number of employees who receive salary, higher than the average
• Use "uni_ruse" database

count

88

Table "employees"

employee_id first_name last_name …

216 Mike Seamans …

178 Barbara Moreland …

… … … …

Database Basics and operations with MySQL

Solution: Higher Salary

SELECT COUNT(e.employee_id) AS `count`
FROM employees AS e
WHERE e.salary >
(
SELECT AVG(salary) AS 'average_salary'
FROM employees
);

Database Basics and operations with MySQL

Indices
Clustered and Non-Clustered Indices

Database Basics and operations with MySQL

• Structures associated with a table or view that speeds retrieval of
rows
• Usually implemented as B-trees

• Indices can be built-in the table (clustered) or stored externally (non-
clustered)

• Adding and deleting records in indexed tables is slower!
• Indices should be used for big tables only (e.g. 50 000 rows)

Indices

Database Basics and operations with MySQL

• Clustered index determine the order of data
• Very useful for fast execution of WHERE, ORDER BY and GROUP BY clauses

• Maximum 1 clustered index per table
• If a table has no clustered index,

its data rows are stored in an
unordered structure (heap)

Clustered Indices

Keys

Data ☰ ☰ ☰ ☰ ☰ ☰ ☰

100-1990-99 200-299

Database Basics and operations with MySQL

Non-Clustered Indices

• Useful for fast retrieving a single record or a range of records
• Each key value entry has a pointer to the data row that contains the key value

• Maintained in a separate

structure in the DB

Keys

Data ☰ ☰ ☰ ☰ ☰ ☰ ☰

100-1990-99 200-299

6587,65891885,1885 8052,8053Pointers

Database Basics and operations with MySQL

CREATE INDEX
ix_users_first_name_last_name

ON users(first_name, last_name);

Indices Syntax

Table Name
Columns

Database Basics and operations with MySQL

• Joins

• Subqueries are used to nest queries

• Indices improve SQL search performance if used properly

Summary

SELECT * FROM employees AS e
JOIN departments AS d ON

d.department_id = e.department_id

Database Basics and operations with MySQL

Chapter 8.
Functions and Triggers –

User-defined Functions, Procedures,
Triggers and Transactions

Database Basics and operations with MySQL

User-Defined Functions
Encapsulating custom logic

Database Basics and operations with MySQL

User-Defined Functions

• Extend the functionality of a MySQL Server
• Modular programming – write once, call it any number of times

• Faster execution – doesn't need to be reparsed and reoptimized with each
use

• Break out complex logic into shorter code blocks

• Functions can be:
• Scalar – return single value or NULL

• Table-Valued – return a table

Database Basics and operations with MySQL

Problem: Count Employees by Town

• Write a function ufn_count_employees_by_town(town_name) that:

• Accepts town name as parameter

• Returns the count of employees in the database who live in that town

Database Basics and operations with MySQL

Solution: Count Employees by Town

CREATE FUNCTION ufn_count_employees_by_town(town_name VARCHAR(20))
RETURNS DOUBLE
BEGIN

DECLARE e_count DOUBLE;
SET e_count := (SELECT COUNT(employee_id) FROM employees AS e
INNER JOIN addresses AS a ON a.address_id = e.address_id
INNER JOIN towns AS t ON t.town_id = a.town_id
WHERE t.name = town_name);
RETURN e_count;

END

Function Name

Function Logic

Database Basics and operations with MySQL

• Examples of expected output:

Result: Count Employees by Town

SELECT ufn_count_employees_by_town('Sofia'); 3

Employees
count

SELECT ufn_count_employees_by_town('Berlin'); 1

Function Call

SELECT ufn_count_employees_by_town(NULL); 0

Database Basics and operations with MySQL

Stored Procedures
Sets of queries stored on DB Server

Database Basics and operations with MySQL

• Stored procedures are logic removed from the application and placed
on the database server

• Can greatly cut down traffic on the network

• Improve the security of your database server

• Separate data access routines from the business logic

• Accessed by programs using different platforms and API's

Stored Procedures

Database Basics and operations with MySQL

Creating Stored Procedures

• CREATE PROCEDURE

• Example:

DELIMITER $$
CREATE PROCEDURE usp_select_employees_by_seniority()
BEGIN
SELECT *
FROM employees
WHERE ROUND((DATEDIFF(NOW(), hire_date) / 365.25)) < 15;

END $$

Procedure Name

Procedure Logic

Database Basics and operations with MySQL

• Executing a stored procedure by CALL

• DROP PROCEDURE

Executing and Dropping
Stored Procedures

DROP PROCEDURE usp_select_employees_by_seniority;

CALL usp_select_employees_by_seniority();

Database Basics and operations with MySQL

• To define a parameterized procedure use the syntax:

Defining Parameterized Procedures

CREATE PROCEDURE usp_procedure_name
(parameter_1_name parameter_type,
parameter_2_name parameter_type,…)

Database Basics and operations with MySQL

Parameterized Stored Procedures – Example

DELIMITER $$

CREATE PROCEDURE usp_select_employees_by_seniority(min_years_at_work INT)

BEGIN

SELECT first_name, last_name, hire_date,

ROUND(DATEDIFF(NOW(),DATE(hire_date)) / 365.25,0) AS 'years'

FROM employees

WHERE ROUND(DATEDIFF(NOW(),DATE(hire_date)) / 365.25,0) > min_years_at_work

ORDER BY hire_date;

END $$

CALL usp_select_employees_by_seniority(15);

Procedure Name

Procedure Logic

Usage

Database Basics and operations with MySQL

Returning Values
CREATE PROCEDURE usp_add_numbers

(first_number INT,

second_number INT,

OUT result INT)

BEGIN

SET result = first_number + second_number

END $$

DELIMITER ;

SET @answer=0;

CALL usp_add_numbers(5, 6,@answer);

SELECT @answer;

-- 11

Creating procedure

Executing procedure

Display results

Database Basics and operations with MySQL

• Write a stored procedure that raises employees salaries by
department name (as parameter) by 5%

• Use uni_ruse database

Problem: Employees Promotion

Database Basics and operations with MySQL

Solution: Employees Promotion

CREATE PROCEDURE usp_raise_salaries(department_name varchar(50))

BEGIN

UPDATE employees e

INNER JOIN departments AS d

ON e.department_id = d.department_id

SET salary = salary * 1.05

WHERE d.name = department_name;

END

Database Basics and operations with MySQL

• Procedure result for 'Sales' department:

Result: Employees Promotion

employee_id salary

268 48 100.00

273 72 100.00

… …

Data before procedure call:

employee_id salary

268 50 505.00

273 75 705.00

… …

Data after procedure call:

CALL usp_raise_salaries('Sales');

Database Basics and operations with MySQL

What is a Transaction?
Executing operations as a whole

Database Basics and operations with MySQL

• Transaction is a sequence of actions (database operations) executed
as a whole

• Either all of them complete successfully or none of the them

• Example of transaction

• A bank transfer from one account into another (withdrawal + deposit)

• If either the withdrawal or the deposit fails the whole operation is cancelled

Transactions

Database Basics and operations with MySQL

Transactions: Lifecycle (Rollback)

Rollback

Read Write

WriteDurable
starting

state

Durable,
consistent,

ending state

Sequence
of reads and

writes

Database Basics and operations with MySQL

Transactions: Lifecycle (Commit)

Commit

Read Write

WriteDurable
starting

state

Durable,
consistent,

ending state

Sequence
of reads and

writes

Database Basics and operations with MySQL

• Transactions guarantee the consistency and the integrity of the
database
• All changes in a transaction are temporary

• Changes are persisted when COMMIT is executed.

• At any time all changes can be canceled by ROLLBACK

• All of the operations are executed as a whole.

Transactions Behavior

Database Basics and operations with MySQL

Checkpoints in games

Castle 1-1 Castle 1-2

DIE

SURVIVEMario

Database Basics and operations with MySQL

What are Transactions?

STATE 1 STATE 2

ROLLBACK

COMMITQueries

Database Basics and operations with MySQL

• Write a transaction that raises an employee's salary by id only if the employee
exists in the database
• If not, no changes should be made

• Use uni_ruse database

Problem: Employees Promotion By ID

Database Basics and operations with MySQL

Solution: Employees Promotion

CREATE PROCEDURE usp_raise_salary_by_id(id int)

BEGIN

START TRANSACTION;

IF((SELECT count(employee_id) FROM employees WHERE employee_id like

id)<>1) THEN

ROLLBACK;

ELSE

UPDATE employees AS e SET salary = salary + salary*0.05

WHERE e.employee_id = id;

END IF;

END

Database Basics and operations with MySQL

• Modern DBMS servers have built-in transaction support
• Implement “ACID” transactions

• E.g. Oracle, MySQL, MS SQL Server, …

• ACID means:
• Atomicity

• Consistency

• Isolation

• Durability

Transactions Properties

Database Basics and operations with MySQL

Triggers
Maintaining the integrity of the data

Database Basics and operations with MySQL

What Are Triggers?

• Triggers - small programs in the database itself, activated by database
events application layer
• UPDATE, DELETE or INSERT queries

• Called in case of specific event

• We do not call triggers explicitly
• Triggers are attached to a table

Database Basics and operations with MySQL

MySQL Types of Triggers
Before After

Event

Trigger

Event

Trigger

Database Basics and operations with MySQL

• There are three different events that can be applied within a trigger:

Events

Events

UpdateInsert Delete

Database Basics and operations with MySQL

Problem: Triggered

• Create a table deleted_employees with fields:
• employee_id – primary key

• first_name, last_name, middle_name, job_title, deparment_id, salary

• Add a trigger to employees table that logs deleted employees into the
deleted_employees table
• Use uni_ruse database

Database Basics and operations with MySQL

Solution: Triggered

CREATE TABLE deleted_employees(
employee_id INT PRIMARY KEY AUTO_INCREMENT,
first_name VARCHAR(20),
last_name VARCHAR(20),
middle_name VARCHAR(20),
job_title VARCHAR(50),
department_id INT,
salary DOUBLE

);

Database Basics and operations with MySQL

Solution: Triggered

CREATE TRIGGER tr_deleted_employees
AFTER DELETE
ON employees
FOR EACH ROW
BEGIN

INSERT INTO deleted_employees
(first_name,last_name,middle_name,job_title,department_id,salary)

VALUES(OLD.first_name,OLD.last_name,OLD.middle_name,OLD.job_title,OL
D.department_id,OLD.salary);
END;

The OLD and NEW keywords allow you
to access columns before/after trigger

action

Database Basics and operations with MySQL

• Trigger action result on DELETE:
• NOTE: Remove foreign key checks before trying to delete employees

• DO NOT submit foreign key restriction changes in the Judge System

Result: Triggered

DELETE FROM employees WHERE employee_id IN (1);

Data in deleted_employees table:

employee_id first_name last_name …

1 Guy Gilbert …

Database Basics and operations with MySQL

• We can optimize with User-defined Functions

• Transactions improve security and consistency

• Stored Procedures encapsulate repetitive logic

• Triggers execute before certain events on tables

Summary

Database Basics and operations with MySQL

Project 609854‐EPP‐1‐2019‐1‐FR‐EPPKA2‐CBHE‐JP ‐ ASEAN FACTORI 4.0:

From Automation and Control Training to the Overall Roll‐out of Industry 4.0 across South East Asian Nations

REFERENCES

1. Robin Dewson, Beginning SQL Server for Developers, 4th Edition, Apress Publishing, pp. 705,

ISBN: 1484202813, 2014;

2. Walter Shields, SQL QuickStart Guide: The Simplified Beginner's Guide to Managing,

Analyzing, and Manipulating Data With SQL (QuickStart Guides™ ‐ Technology), ClydeBank

Media LLC, pp. 242, ISBN: 1945051752, 2019;

3. Vinicius Grippa, Sergey Kuzmichev, Learning MySQL: Get a Handle on Your Data, 2nd Edition,

O'Reilly Media, pp. 629, ISBN: 1492085928, 2021;

4. Joel Murach, Murach's MySQL, 3rd Edition, Mike Murach & Associates Publishing, pp. 628,

ISBN: 1943872368, 2019;

5. Rick Silva, MySQL Crash Course: A Hands‐on Introduction to Database Development, No

Starch Press, pp. 352, ISBN: 1718503008, 2023;

6. Sveta Smirnova, Alkin Tezuysal, MySQL Cookbook: Solutions for Database Developers and

Administrators, 4th Edition, O'Reilly Media, pp. 971, ISBN: 1492093165, 2022;

7. Thomas Pettit, Scott Cosentino, The MySQL Workshop: A practical guide to working with data

and managing databases with MySQL, Packt Publishing, pp. 726, ISBN: 1839214902, 2022;

8. Adam Aspin, Querying MySQL: Make your MySQL database analytics accessible with SQL

operations, data extraction, and custom queries, BPB Publications, pp. 672, ISBN:

9355512678, 2022;

9. Rick Silva, MySQL Crash Course: A Hands‐on Introduction to Database Development, No

Starch Press, pp. 323, ISBN: 1718503008, 2023.

