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BACKGROUND 

The e‐textbook titled “Database Basics and operations with MySQL” is intended for students registered in 

the University of Health Sciences (UHS) in Vientiane, Laos.  

The purpose of this e‐textbook is to present to the students the basic concepts of the modern databases 

and the most basic characteristics and operations of the Structured Query Language – SQL.  
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The objectives are as follows: 
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‐ To present the basic SQL operations and queries 

‐ To introduce the students to MySQL Server and its characteristics 

‐ To show to the students the basic steps for database design and the related rules  
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Chapter 1. 
Introduction to Databases
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Data Management
When Do We Need a Database?
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Storage vs. Management

SALES RECEIPT

Date: 07/16/2016
Order#:[00315]

Customer:          David Rivers

Product:      Oil Pump

S/N:      OP147-0623

Unit Price: 69.90

Qty: 1

Total: 69.90

00315 – 07/16/2016
David Rivers
Oil Pump (OP147-0623)
1 x 69.90
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Storage vs. Management

Order# Date Customer Product S/N Qty

00315 07/16/2016 David Rivers Oil Pump OP147-063 1
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• Storing data is not the primary reason to use a database

• Flat storage eventually runs into issues with

• Size

• Ease of updating

• Accuracy

• Security

• Redundancy

• Importance

Storage vs. Management
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• A database is an organized collection of related information

• It imposes rules on the contained data

• Access to data is usually provided by a "system" (DBMS) database
management

• Relational storage first proposed by Edgar Codd in 1970

Databases
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• Relational Data Base Management System

• Database management

• It parses requests from the user and takes the appropriate action

• The user doesn't have direct access to the stored data

• Data is presented by relations – collection of tables related by common fields

• MS SQL Server, DB2, Oracle and MySQL

RDBMS
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Database Engines

Client-Server Model
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• SQL Server uses the Client-Server Model

Database Engine Flow

Clients Query Access

DataData

DatabaseEngine
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Client-Server Model

TCP/IP

CLIENTS

DATABASE
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Top Database Engines

Source: http://db-engines.com/en/ranking
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The Structured Query Language
Query Components
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• Programming language designed for managing data in a relational
database

• Developed at IBM in the early 1970s

• To communicate with the Engine we use SQL 

Structured Query Language
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• Subdivided into several language elements

• Queries

• Clauses

• Expressions

• Predicates

• Statements

Structured Query Language

UPDATE employees
SET salary = salary * 0.1
WHERE job_title = "Cashier";

Update clause Expression

Predicate

Statement
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• Logically divided in four sections

• Data Definition – describe the structure of our data

• Data Manipulation – store and retrieve data

• Data Control – define who can access the data

• Transaction Control – bundle operations and allow rollback 

Structured Query Language
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SQL

DDL
CREATE
ALTER
DROP

TRUNCATE

DML
SELECT
INSERT
UPDATE
DELETE

DCL
GRANT
REVOKE

DENY

TCL
BEGIN TRAN

COMMIT
ROLLBACK

SAVE

Structured Query Language
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MySQL
Relational DB Management
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• Open-source relational database management system

• Used in many large-scale websites like including Google, Facebook, YouTube 
etc.

• Works on many system platforms – 

MAC OS, Windows, Linux

• Download MySQL Server

• Windows:

• Ubuntu/Debian: 

MySQL

dev.mysql.com/downloads/windows/installer/

dev.mysql.com/downloads/repo/apt/

Database Basics and operations with MySQL 

https://dev.mysql.com/downloads/windows/installer/5.7.html
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• Logical Storage
• Instance

• Database/Schema

• Table

• Physical Storage
• Data files and Log files

• Data pages

MySQL Server Architecture

Database(Schema)

Table Table

Table

Database(Schema)

Database(Schema)

Data Logs

☰ ☰ ☰ ☰☰ ☰ ☰ ☰

Table

Instance
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• The table is the main building block of any database

• Each row is called a record or entity

• Columns (fields) define the type of data they contain

Database Table Elements

customer_id first_name birthdate city_id

1 Brigitte 03/12/1975 101

2 August 27/05/1968 102

3 Benjamin 15/10/1988 103

4 Denis 07/01/1993 104Row

Column

Cell
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Table Relationships
Splitting data in tables
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Why Split Related Data?

order_id date customer product s/n price
00315 07/16/2016 David Rivers Oil Pump OP147-0623 69.90

00315 07/16/2016 David Rivers Accessory Belt AB544-1648 149.99

00316 07/17/2016 Sarah Thorne Wiper Fluid WF000-0001 99.90

00317 07/18/2016 Michael Walters Oil Pump OP147-0623 69.90

first last registered email
David Rivers 05/02/2016 drivers@mail.cx

Sarah Thorne 07/17/2016 sarah@mail.cx

Michael Walters 11/23/2015 walters_michael@mail.cx

email2
david@homedomain.cx

NULL

NULL

Empty records

Redundant information
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• We split the data and introduce relationships between the tables to avoid
repeating information

• Connection via Foreign Key in one table pointing to the Primary Key in another

Related Tables

user_id first last registered
203 David Rivers 05/02/2016

204 Sarah Thorne 07/17/2016

205 Michael Walters 11/23/2015

user_id email
203 drivers@mail.cx

204 sarah@mail.cx

205 walters_michael@mail.cx

203 david@homedomain.cx

Primary Key Foreign Key
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Entity Relationship (E/R) Diagrams
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Programmability
Customizing Database Behavior

Begin

?

?

Database Basics and operations with MySQL 



• Indices make data lookup faster
• Clustered – bound to the primary key, physically sorts data

• Non-Clustered – can be any field, references the primary index

• Structured as an ordered tree

Indices

PK

Data ☰ ☰ ☰ ☰ ☰ ☰ ☰

100-1990-99 200-299

Index

Links ☰ ☰ ☰ ☰ ☰ ☰ ☰

Range 2Range 1 Range 3
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• Views are prepared queries for displaying sections of our data

• Evaluated at run time – they do not increase performance

Views

CREATE VIEW v_employee_names AS
SELECT e.employee_id,

e.first_name,
e.last_name

FROM uni_ruse.employees AS e

SELECT * FROM v_employee_names
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• A database can further be customized with reusable code

• Procedures – carry out a predetermined action
• E.g. get all employees with salary above 35000

• Functions – receive parameters and return a result
• E.g. get the age of a person using their birthdate and current date

• Triggers – watch for activity in the database and react to it
• E.g. when a record is deleted, write it to an archive

Procedures, Functions and Triggers
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Procedures

CREATE PROCEDURE udp_get_employees_salary_above_35000()
BEGIN

SELECT first_name, last_name FROM employees
WHERE salary > 35000;

END

CALL udp_get_employees_salary_above_35000
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Functions

CREATEFUNCTION udf_get_age (dateValue DATE)
RETURNSINT

BEGIN
DECLAREresultINT;
SETresult = TIMESTAMPDIFF(YEAR, dateValue, NOW());
RETURNresult;
END

SELECTudf_get_age('1988-12-21');
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• RDBMS stores and manages data

• We communicate with the DB engine via SQL

• MySQL is a multiplatform RDBMS using SQL

• Table relations reduce repetition and complexity

• Databases can be customized with functions and procedures

Summary
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Chapter 2.
Data Definition and Data Types
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Data Types in MySQL Server
Numeric, String and Data Types
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• Numeric data types have certain range

• Their range can be changed if they are:

• Signed - represent numbers both in the positive and negative ranges

• Unsigned - represent numbers only in the positive range

• E.g. signed and unsigned INT:

Numeric Data Types

Signed Range Unsigned Range

Min Value Max Value Min Value Max Value

-2147483648 2147483648 0 4294967295
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• INT [(M)] [UNSIGNED] 
• TINYINT, SMALLINT, MEDIUMINT, BIGINT

• DOUBLE [(M, D)] [UNSIGNED]

• E.g. DOUBLE[5, 2] – 999.99

• DECIMAL [(M, D )] [UNSIGNED] [ZEROFILL]

Numeric Data Types

Digits stored for value
Decimals after 
floating point
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• String column definitions include attributes that specify the 
character set or collation 

• CHARACTER SET (Encoding) 

• E.g. utf8, ucs2

• CHARACTER COLLATION – rules for encoding comparison

• E.g. latin1_general_cs, Traditional_Spanish_ci_ai etc.

• Set and collation can be defined at the database, table or column level

String Types 

Determines the storage 
of each character (single 

or multiple bytes)

Determines the sorting 
order and case-sensitivity
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• ORDER BY with different collations

CHARACTER COLLATION - Example

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL
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• CHAR [(M)] - up to 30 characters

• VARCHAR(M) – up to 255 characters

• TEXT [(M)] – up to 65 535 characters
• TINYTEXT, MEDIUMTEXT, LONGTEXT

• BLOB - Binary Large OBject [(M)]  - 65 535 (216 − 1) characters

• TINYBLOB, MEDIUMBLOB, LONGBLOB

Column name Column Type

title VARCHAR(CHAR)

content TEXT(LONGTEXT)

picture BLOB(LONGBLOB)

String Types 
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• DATE - for values with a date part but no time part

• TIME - for values with time but no date part

• DATETIME - values that contain both date and time parts

• TIMESTAMP - both date and time parts

Date Types 

Column name Column Type

birthdate DATE

last_time_online TIMESTAMP

start_at TIME

deleted_on DATETIME

DATETIME and 
TIMESTAMP have 

different time 
ranges
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• MySQL retrieves values for a given date type in a standard output
format
• E.g. as a string in either 'YYYY-MM-DD' or 'YY-MM-DD'

Data Type Column Type

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

Date Types 
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Database Modeling
Data Definition using GUI Clients
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• We will manage databases with HeidiSQL

• Enables us:
• To create a new database

• To create objects in the database (tables, stored procedures, relationships and 
others)

• To change the properties of objects

• To enter records into the tables

Working with IDEs
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• Select the instance Create new -> Database from the context 
menu

Creating a New Database
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• Right click on database Select Create new -> Table

Creating Tables

Set up table name

Add new record
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• A Primary Key is used to uniquely identify and index records

• Click on row Create new index -> Primary from the context menu of 
the desired row

Creating Tables
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• Auto increment – on the "Default" field

Creating Tables
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• We can add, modify and read records with GUI Clients

• To insert or edit a record, click inside the cell

Storing and Retrieving Data
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Basic SQL Queries
Data Definition using SQL

CREATE TABLE people

(

id INT NOT NULL,

email VARCHAR(50) NOT NULL,

first_name VARCHAR(50),

last_name VARCHAR(50)

);
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• We communicate with the database engine using SQL

• Queries provide greater control and flexibility

• To create a database using SQL:

• SQL keywords are conventionally capitalized

SQL Queries

CREATE DATABASE employees;

Database name
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Table Creation in SQL

CREATE TABLE people

(

id INT NOT NULL,

email VARCHAR(50) NOT NULL,

first_name VARCHAR(50),

last_name VARCHAR(50)

);

Table name

Column name Data type

Custom properties
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• Get all information from a table

• You can limit the columns and number of records

Retrieve Records in SQL

SELECT * FROM employees;

SELECT first_name, last_name FROM employees 

LIMIT 5;

Table name

List of columns

Number of records
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Table Customization
Adding Rules, Constraints and Relationships
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• Primary Key

• Auto-Increment (Identity)

• Unique constraint – no repeating values in entire table

• Default value – if not specified (otherwise set to NULL)

Custom Column Properties

id INT NOT NULL PRIMARY KEY

id INT AUTO_INCREMENT PRIMARY KEY

email VARCHAR(50) UNIQUE

balance DECIMAL(10,2) DEFAULT 0
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Altering Tables
Changing Table Properties After Creation
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• A table can be changed using the keywords ALTER TABLE

• Add new column

Altering Tables Using SQL

ALTER TABLE employees

ADD salary DECIMAL;

ALTER TABLE employees;

Table name

Column name Data type
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• Delete existing column

• Modify data type of existing column

Altering Tables Using SQL

ALTER TABLE people

MODIFY COLUMN email VARCHAR(100);

ALTER TABLE people

DROP COLUMN full_name;

Column name

Column name New data type
Database Basics and operations with MySQL 



• Add primary key to existing column

• Add unique constraint

Altering Tables Using SQL

ALTER TABLE people

ADD CONSTRAINT pk_id

PRIMARY KEY (id);

Constraint name

Column name
(more than one for composite key)

ALTER TABLE people

ADD CONSTRAINT uq_email

UNIQUE (email)

Constraint name

Columns name(s)
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• Set default value

Altering Tables Using SQL

ALTER TABLE people

ALTER COLUMN balance SET DEFAULT 0;

Column name

Default value
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Deleting Data and Structures
Dropping and Truncating
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• Deleting structures is called dropping
• You can drop keys, constraints, tables and entire databases

• Deleting all data in a table is called truncating

• Both of these actions cannot be undone – use with caution!

Deleting from Database
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• To delete all the entries in a table

• To drop a table – delete data and structure

• To drop entire database

Dropping and Truncating

TRUNCATE TABLE employees;
Table name

DROP TABLE employees;
Table name

DROP DATABASE uni_ruse;
Database name

Database Basics and operations with MySQL 



• To remove a constraining rule from a column
• Primary keys, value constraints and unique fields

• To remove DEFAULT value (if not specified, revert to NULL)

Dropping and Truncating

ALTER TABLE employess

DROP CONSTRAINT pk_id;

Table name

Constraint name

ALTER TABLE employess

ALTER COLUMN clients

DROP DEFAULT; Columns name

Table name
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• Table columns have a fixed type

• We can use GUI Clients to create and customize tables

• SQL provides greater control

Summary

CREATE TABLE people

(

id INT NOT NULL,

email VARCHAR(50) NOT NULL,

first_name VARCHAR(50),

last_name VARCHAR(50)

);
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Chapter 3. 
Create, Retrieve, Update, Delete 

(CRUD) using SQL queries
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Query Basics
SQL Introduction

Database Basics and operations with MySQL 



• Select first, last name and job title about employees:

• Select projects which start on 01-06-2003:

• Inserting data into table:

SQL Queries – Few Examples

SELECT first_name, last_name, job_title FROM employees;

INSERT INTO projects(name, start_date)
VALUES('Introduction to SQL Course', '2006-01-01');

SELECT * FROM projects WHERE start_date='2003-06-01';
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• Update end date of specific projects:

• Delete specific projects:

SQL Queries – Few Examples

UPDATE projects
SET end_date = '2006-08-31'

WHERE start_date = '2006-01-01';

DELETE FROM projects
WHERE start_date = '2006-01-01';
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Retrieving Data
Using SQL SELECT
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Capabilities of SQL SELECT 
Selection
Take a subset of the rows

Projection
Take a subset of the columns

Table 1 Table 2

Join
Combine tables by
some column
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• Selecting all columns from the "departments" table

• Selecting specific columns

SELECT – Examples

SELECT * FROM departments;

SELECT department_id, name
FROM departments

department_id name manager_id

1 Engineering 12

2 Tool design 4

3 Sales 273

… … …

department_id name

1 Engineering

2 Tool design

3 Sales

… …

List of columns
(* for all)

Table name
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• Aliases rename a table or a column heading

• You can shorten fields or clarify abbreviations

Column Aliases

SELECT employee_id AS id, first_name, last_name
FROM employees;

id first_name last_name

1 Guy Gilbert

2 Kevin Brown

… … …

SELECT c.duration,
c.acg AS 'Access Control Gateway'

FROM calls AS c;

Display name
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• You can concatenate column names or strings using the concat()
function

• String literals are enclosed in ['](single quotes)

• Table and column names containing special symbols use [`] (backtick)

Concatenation

SELECT concat(`first_name`,' ',`last_name`) AS 'full_name', 
`job_title` as  'Job Title',
`id` AS 'No.'

FROM `employees`;
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• Find information about all employees, listing their:
• Full Name

• Job title

• Salary

• Use concatenation to display first and last names as one field

• Note: Query Hospital database

Problem: Employee Summary
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Employee Summary - Solution

SELECT concat(`first_name`,' ',`last_name`) AS 
'full_name', 
`job_title` as 'job_title', 

`salary` AS `salary`
FROM `employees` WHERE salary >= 1000;

Concatenation

Column alias
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Filtering the Selected Rows
• Use DISTINCT to eliminate duplicate results

• You can filter rows by specific conditions using the WHERE clause

• Other logical operators can be used for greater control

SELECT `last_name`, `department_id` 
FROM `employees` 
WHERE `department_id` = 1;

SELECT `last_name`, `salary` 
FROM `employees`
WHERE `salary` <= 20000;

SELECT DISTINCT `department_id`
FROM `employees`;
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Other Comparison Conditions
• Conditions ca be combined using NOT, OR, AND and brackets

• Using BETWEEN operator to specify a range:

• Using IN / NOT IN to specify a set of values:

SELECT `last_name`, `salary`FROM `employees`
WHERE `salary` BETWEEN 20000 AND 22000;

SELECT `first_name`, `last_name`, `manager_id` 
FROM `employees`
WHERE `manager_id` IN (109, 3, 16);

SELECT `last_name` FROM `employees`
WHERE NOT (`manager_id` = 3 OR `manager_id` = 4);
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• NULL is a special value that means missing value
• Not the same as 0 or a blank space

• Checking for NULL values

Comparing with NULL

SELECT `last_name`, `manager_id` 
FROM `employees`
WHERE `manager_id` IS NULL;

SELECT `last_name`, `manager_id` 
FROM `employees`
WHERE `manager_id` IS NOT NULL;

SELECT `last_name`, `manager_id` 
FROM `employees`
WHERE `manager_id` = NULL; This is always false!
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Sorting with ORDER BY

• Sort rows with the ORDER BY clause
• ASC: ascending order, default

• DESC: descending order

SELECT `last_name`, `hire_date`
FROM `employees`
ORDER BY `hire_date`;

LastName HireDate

Gilbert 1998-07-31

Brown 1999-02-26

Tamburello 1999-12-12

… …

SELECT `last_name`, `hire_date`
FROM `employees`
ORDER BY `hire_date` DESC;

LastName HireDate

Valdez 2005-07-01

Tsoflias 2005-07-01

Abbas 2005-04-15

… …

ASC is the default
sorting order
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• Views are virtual tables made from others tables, views or joins
between them

• Usage:

• To simplify writing complex queries 

• To limit access to data for certain users

Views
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Views

Table 2

Column 1 Column 2 Column 3

Table 1

Column 1 Column 2 Column 3

v_table1_table2

Column 1 Column 2 Column 3
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• Get employee names and salaries, by department

Views - Example

CREATE VIEW `v_hr_result_set` AS
SELECT 

CONCAT(`first_name`,' ',`last_name`) AS 'Full Name', `salary`
FROM `employees` ORDER BY `department_id`;

SELECT * FROM `v_hr_result_set`;
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• Create a view that selects all information about the top paid employee
• Name the view v_top_paid_employee

• Note: Query Geography database

Problem: Top Paid Employee

SELECT * FROM `v_top_paid_employee`;
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Solution: Top Paid Employee

CREATE VIEW `v_top_paid_employee`
AS

SELECT * FROM `employees`
ORDER BY `salary` DESC LIMIT 1;

Greatest value firstSorting column
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Writing Data in Tables
Using SQL INSERT
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• The SQL INSERT command

• Bulk data can be recorded in a single query, separated by comma

Inserting Data

INSERT INTO `towns` VALUES (33, 'Paris');

Values for
all columns

INSERT INTO `employees_projects`
VALUES (229, 1),

(229, 2),
(229, 3), …

INSERT INTO projects(`name`, `start_date`)
VALUES ('Reflective Jacket', NOW())

Specify
columns
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• You can use existing records to create a new table

• Or into an existing table

INSERT INTO projects(name, start_date)
SELECT CONCAT(name,' ', ' Restructuring'), NOW()
FROM departments;

CREATE TABLE `customer_contacts`
AS SELECT `customer_id`, `first_name`, `email`, `phone`
FROM `customers`;

New table name

Existing source
List of columns

Database Basics and operations with MySQL 

Inserting Data



Modifying Existing Records
Using SQL UPDATE and DELETE
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• Deleting specific rows from a table

• Note: Don’t forget the WHERE clause!

• Delete all rows from a table (TRUNCATE works faster than DELETE)

Deleting Data

DELETE FROM `employees` 
WHERE `employee_id` = 1;

TRUNCATE TABLE users;

Condition
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Updating Data
• The SQL UPDATE command

• Note: Don’t forget the WHERE clause!

UPDATE `employees`
SET `last_name` = 'Brown'

WHERE `employee_id` = 1;

UPDATE `employees`
SET `salary` = `salary` * 1.10,

`job_title` = CONCAT('Senior',' ', `job_title`)
WHERE `department_id` = 3;

New values
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•We can easy manipulate our database with SQL queries

•Queries provide a flexible and powerful
method to manipulate records

Summary

SELECT *
FROM `projects`
WHERE `start_date` = '2006-01-01';
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Chapter 4. 
Functions and Wildcards 

in MySQL Server
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Functions in MySQL Server
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• String Functions – for manipulating text, both from table values or
user input
• E.g. concatenate column values

• Math Functions – calculations and working with aggregate data
• E.g. perform geometry and currency operations

• Date and Time Functions
• E.g. find length of timespan

• Other

SQL Functions
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String Functions
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• SUBSTRING() – extracts part of a string

String Functions 

SUBSTRING(String, Position)

SUBSTRING(String, Position, Length)

SUBSTRING(String FROM Position FOR Length)
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• Get short summary of article

SUBSTRING - Example

SELECT `article_id`, `author`, `content`,
SUBSTRING(`content`, 1, 200) AS 'Summary'

FROM `articles`;
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• Write a query to find all book titles that start with "The"
• Query book_library database

Problem: Find Book Titles
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Solution: Find Book Titles
SELECT title FROM books WHERE 

SUBSTRING(title, 1, 3) = "The";
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• REPLACE – replaces specific string with another
• Performs a case-sensitive match 

String Functions

REPLACE(String, Pattern, Replacement)

Field from table

String to replace

Replacement 
pattern
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• Censor the word blood from album names

REPLACE - Example

SELECT REPLACE(`title`, 'blood', '*****')
AS 'Title'

FROM `album`;
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• Write a query to find all book titles that start with "The" and replace 
the substring with "***"
• Query book_library database

Problem: Replace Titles
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Solution: Replace Titles

UPDATE books
SET title = REPLACE(title,"The","***")
WHERE SUBSTRING(title, 1, 3) = "The";
SELECT title from books 
WHERE SUBSTRING(title, 1, 3) = "***";
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• LTRIM & RTRIM – remove spaces from either side of string

• CHAR_LENGTH – count number of characters

• LENGHT – get number of used bytes (double for Unicode)

String Functions

CHAR_LENGTH(String)

LENGTH(String)

LTRIM(String)

RTRIM(String)
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• LEFT & RIGHT – get characters from beginning or end of string

• Example: name shorthand (first 3 letters)

String Functions

LEFT(String, Count)

RIGHT(String, Count)

SELECT `id`, `start`,

LEFT(`name`, 3) AS 'Shorthand'

FROM `games`;
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• LOWER & UPPER – change letter casing

• REVERSE – reverse order of all characters in string

• REPEAT – repeat string

String Functions

LOWER(String)

UPPER(String)

REVERSE(String)

REPEAT(String, Count)
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• LOCATE – locate specific pattern (substring) in string

• INSERT – insert substring at specific position

String Functions

LOCATE(Pattern, String,[Position])

INSERT(String, Position, Length, Substring)

If omitted, begins at 1

Number of characters
to delete
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Arithmetical Operators and Numeric 
Functions
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• Supported common arithmetic operators 

Arithmetical Operators

Name Description

DIV Integer division

/ Division operator

- Minus Operator

%, MOD Modulo operator

+ Addition operator

* Multiplication operator

- (arg) Change sign of argument
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• Used primarily for numeric manipulation and/or mathematical calculations

• PI – get the value of Pi (15 –digit precision)

• ABS – absolute value

Numeric Functions 

SELECT PI() +0.000000000000000

ABS(Value)
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• SQRT – square root

• POW – raise value to desired exponent

Numeric Functions

SQRT(Value)

POW(Value, Exponent)
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• CONV – Converts numbers between different number bases

• ROUND – obtain desired precision

• FLOOR & CEILING – return the nearest integer

Math Functions

ROUND(Value, Precision)

CONV(Value,from_base,to_base)

Can be negative

FLOOR(Value)

CEILING(Value)
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• SIGN – returns +1, -1 or 0, depending on value sign

• RAND – get a random value in range [0,1]
• If Seed is not specified, one is assigned at random

Math Functions

SIGN(Value)

RAND()

RAND(Seed)
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Date Functions
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• EXTRACT – extract a segment from a date as an integer

• Part can be any part and format of date or time

• For a full list, see the official documentation

Date Functions

EXTRACT(Part FROM Date)

year, %Y, %y

month, %M, %m

day, %w, %D

YEAR(Date)

MONTH(Date)

DAY(Date)
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• TIMESTAMPDIFF – find difference between two dates

• Part can be any part and format of date or time

Date Functions

TIMESTAMPDIFF(Part, FirstDate, SecondDate)
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• Show employee experience

Date Functions - Example

SELECT `employee_id`, `first_name`, `last_name`,

TIMESTAMPDIFF(year, `hire_date`, '2017-05-31')

AS 'Years In Service'

FROM `employees`;
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• Write a query to calculate how many days have authors lived
• Use TIMESTAMPDIFF

• Query book_library database

Problem: Days Lived
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Days Lived - Solution

SELECT  concat(first_name, ' ', last_name) as 'Full Name', TIMESTAMPDIFF(DAY, 
born, died) as 'Days Lived' 
FROM authors;
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• DATE_FORMAT – formats the date value according to the format

• NOW – obtain current date and time

Date Functions

SELECT DATE_FORMAT('2017/05/31', '%Y %b %D') AS 'Date';

SELECT NOW();
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Wildcards
Selecting results by partial match
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• Used to substitute any other character(s) in a string
• '%' - represents zero, one, or multiple characters

• '_' - represents a single character

• Can be used in combinations

• Used with LIKE operator in a WHERE clause
• Similar to Regular Expressions

Wildcards
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• Find any values that start with "a"

• Find any values that have "r" in second position

• Finds any values that starts with "a" and ends with "o"

WHERE CustomerName LIKE 'a%';

WHERE CustomerName LIKE '_r%';

WHERE ContactName LIKE 'a%o';
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• Supported characters also include:
• \ – specify prefix to treat special characters as normal

• [charlist] – specifying which characters to look for
• [!charlist] – excluding characters

Wildcard Characters

SELECT * FROM `customers`

WHERE `city` LIKE '[a-c]%'; 

"a", "b", or "c"
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• Write a query to retrieve information about the titles of all Harry 
Potter books
• Use Wildcards

• Query book_library database

Problem: Harry Potter Books
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Harry Potter Books - Solution

SELECT title FROM books
WHERE title LIKE 'Harry Potter%';
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• REGEXP - pattern matching using regular expressions

Using Regular Expression

SELECT `employee_id`, `first_name`, `last_name`

FROM `employees`

WHERE `first_name` REGEXP '^\[^K\]{3}\$';

Regular expression
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• MySQL Server provides various built-in 
functions

• Numerical functions

• String functions

• Using Wildcards, we can obtain results 
by partial string matches

• Regular expressions

Summary
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Chapter 5. 
Data Aggregation - How to get 

data insights?
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Grouping
Consolidating data based on criteria
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• Grouping allows taking data into separate groups based on a
common property

Grouping

Grouping column

Can be 
aggregated

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000
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•With GROUP BY you can get each separate group and use an
"aggregate" function over it (like Average, Min or Max):

SELECT e.`job_title`, count(employee_id)
FROM `employees` AS e

GROUP BY e.`job_title`;

GROUP BY

Grouping
Columns
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•With DISTINCT you will get all unique values:

DISTINCT

SELECT DISTINCT e.`job_title`
FROM `employees` AS e;

Unique 
Values

Database Basics and operations with MySQL 



•Write a query which prints the total sum of salaries for each 
department in the uni_ruse database

• Order them by DepartmentID (ascending)

Problem: Departments Total Salaries

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

department_id total_salary

1 20,000

2 30,000

3 15,000
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SELECT e.`department_id`, 
SUM(e.`salary`) AS 'Total Salary'

FROM `employees` AS e
GROUP BY e.`department_id`
ORDER BY e.`department_id`;

Solution: Departments Total Salaries

Grouping 
Column

Grouping 
Columns

New Column Alias

Table Alias
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Aggregate Functions
COUNT, SUM, MAX, MIN, AVG…
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• Used to operate over one or more groups performing data analysis on every 
one
• MIN, MAX, AVG, COUNT etc.

• They usually ignore NULL values

Aggregate Functions

SELECT e.`department_id`, 
MIN(e.`salary`) AS 'MinSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;
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• COUNT - counts the values (not nulls) in one or more columns based 
on grouping criteria

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

department_name SalaryCount

Database Support 2

Application Support 3

Software Support 1
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• Note that we when we use COUNT we will ignore any employee with 
NULL salary.

SELECT e.`department_id`, 
COUNT(e.`salary`) AS 'Salary Count'

FROM `employees` AS e
GROUP BY e.`department_id`;

COUNT Syntax

Grouping 
Column

Grouping 
Columns

New Column Alias
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SUM

• SUM - sums the values in a column

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

department_name total_salary

Database Support 20,000

Application Support 30,000

Software Support 15,000
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• If any department has no salaries NULL will be displayed.

SELECT e.`department_id`, 
SUM(e.`salary`) AS 'TotalSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

SUM Syntax

Grouping 
Column

Grouping 
Columns

Table Alias

New Column Alias
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• MAX - takes the maximum value in a column.

MAX

department_name max_salary

Database Support 15,000

Application Support 15,000

Software Support 15,000

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000
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SELECT e.`department_id`,
MAX(e.`salary`) AS 'MaxSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

MAX Syntax
Grouping 
Column

Grouping 
Columns

Table Alias

New Column Alias
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MIN

• MIN takes the minimum value in a column. 

department_name min_salary

Database Support 5,000

Application Support 5,000

Software Support 15,000

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000
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SELECT e.`department_id`,
MIN(e.`salary`) AS 'MinSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

MIN Syntax

Grouping 
Column

Grouping 
Columns

Table Alias

New Column Alias
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AVG

• AVG calculates the average value in a column. 

department_name average_salary

Database Support 10,000

Application Support 10,000

Software Support 15,000

employee department_name salary

Adam Database Support 5,000

John Database Support 15,000

Jane Application Support 10,000

George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000

Database Basics and operations with MySQL 



SELECT e.`department_id`, 
AVG(e.`salary`) AS 'AvgSalary'

FROM `employees` AS e
GROUP BY e.`department_id`;

AVG Syntax
Grouping 
Column

Grouping 
Columns

Table Alias

New Column Alias

Database Basics and operations with MySQL 



Having
Using predicates while grouping
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• The HAVING clause is used to filter data based on aggregate values. 

• We cannot use it without grouping before that

• Any Aggregate functions  in the "HAVING" clause and in the 
"SELECT" statement are executed one time only

• Unlike HAVING, the WHERE clause filters rows before the aggregation

Having Clause
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• Filter departments which have total salary more or equal 15,000.

Having Clause: Example

Aggregated value

employe
e

department_name salary Total 
Salary

Adam Database Support 5,000
20,000

John Database Support 15,000

Jane Application Support 10,000

10,000George Application Support 15,000

Lila Application Support 5,000

Fred Software Support 15,000 15,000

department_name average_salary

Database Support 10,000

Software Support 15,000
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SELECT e.`department_id`,
SUM(e.salary) AS 'TotalSalary'

FROM `employees` AS e
GROUP BY e.`department_id`
HAVING `TotalSalary`< 250000;

HAVING Syntax

Grouping 
Column

Aggregate
Function

Grouping 
Columns

New 
Column Alias

Having 
Predicate
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• Grouping

• Aggregate Functions

• Having

Summary

SELECT
  SUM(e.`salary) AS 'TotalSalary'
FROM `employees` AS e
GROUP BY e.`department_id`
HAVING SUM(e.`salary`) < 250000;
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Chapter 6.
Table Relations - Database Design 

and Rules
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Database Design
Fundamental Concepts
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Steps in Database Design

1
Identification of 

the entities

2
Defining table 

columns 

3
Defining primary 

keys

4
Modeling 

relationships

5
Defining 

constraints

6
Filling test data
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• Entity tables represent objects from the real world
• Most often they are nouns in the specification

• For example:

• Entities: Student, Course, Town

Identification of Entities

We need to develop a system that stores information about 

students, which are trained in various courses. The courses

are held in different towns. When registering a new student 

the following information is entered: name, faculty number, 

photo and date.
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• Columns are clarifications for the entities in the text of the 
specification, for example:

• Students have the following characteristics:
• Name, faculty number, photo, date of enlistment and a list of courses they 

visit

Identification of the Columns

We need to develop a system that stores information about 

students, which are trained in various courses. The courses

are held in different towns. When registering a new student 

the following information is entered: name, faculty number, 

photo and date.
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• Always define an additional column for the primary key
• Don't use an existing column

• Must be an integer number

• Must be declared as a PRIMARY KEY

• Use auto_increment to implement auto-increment

• Put the primary key as a first column

• Exceptions
• Entities that have well known ID, e.g. countries (BG, DE, US) and currencies 

(USD, EUR, BGN)

How to Choose a Primary Key?
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• Relationships are dependencies between the entities:

• "Students are trained in courses" – many-to-many relationship.

• "Courses are held in towns" – many-to-one (or many-to-many) relationship

Identification of Relationships

We need to develop a system that stores information about 

students, which are trained in various courses. The courses are 

held in different towns. When registering a new student the 

following information is entered: name, faculty number, photo 

and date.
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Table Relations
Relational Database Model in Action

Database Basics and operations with MySQL 



9

• Relationships between tables are based on interconnections: 
PRIMARY KEY / FOREIGN KEY

Relationships 

countries
towns

Primary key Foreign key Primary key

Relationships

id name country_id

1 Sofia 1

2 Varna 1

3 Munich 2

4 Berlin 2

5 Moscow 3

id name

1 Bulgaria

2 Germany

3 Russia
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• The foreign key is an identifier of a record located in another 
table (usually its primary key)

• By using relationships we avoid repeating data in the database 

• Relationships have multiplicity:
• One-to-many – e.g. country / towns
• Many-to-many – e.g. student / course
• One-to-one – e.g. example driver / car

Relationships
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One-to-Many/Many-to-One

Mountains Peaks

Primary key Primary key Foreign key

Relation

mountain_id name

1 Causasus

peak_id mountain_id

61 1

66 1
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CREATE TABLE mountains(
  mountain_id INT PRIMARY KEY,
  mountain_name VARCHAR(50)
);
CREATE TABLE peaks(
  peak_id INT PRIMARY KEY,
  mountain_id INT,

CONSTRAINT fk_peaks_mountains 
FOREIGN KEY (mountain_id) 
REFERENCES mountains(mountain_id)

);

Setup
Primary key

Foreign Key

Table Peaks
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CONSTRAINT fk_peaks_mountains 
FOREIGN KEY (mountain_id) 
REFERENCES mountains(mountain_id);

Foreign Key

Constraint 
Name

Primary KeyReferent Table

Foreign Key
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Many-to-Many

employees projects

employees_projects

Primary key
Primary key

Mapping table

employee_id name

1 …

40 …

employee_id project_id

1 4

40 24

project_id name

4 …

24 …
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CREATE TABLE employees(
employee_id INT PRIMARY KEY,
employee_name VARCHAR(50)

);

Setup

Table Employees

CREATE TABLE projects(
project_id INT PRIMARY KEY,
project_name VARCHAR(50)

);

Table Projects
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CREATE TABLE employees_projects(
employee_id INT,
project_id INT,

  CONSTRAINT pk_employees_projects
  PRIMARY KEY(employee_id, project_id),
  CONSTRAINT fk_employees_projects_employees
  FOREIGN KEY(employee_id)
  REFERENCES employees(employee_id),
  CONSTRAINT fk_employees_projects_projects
  FOREIGN KEY(project_id)
  REFERENCES projects(project_id)
);

Setup
Mapping Table

Foreign Key

Foreign Key
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One-to-One

cars drivers

Primary key
Foreign key

Primary key

Relation

car_id driver_id

1 166

2 102

driver_id driver_name

166 …

102 …
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CREATE TABLE drivers(
driver_id INT PRIMARY KEY,
driver_name VARCHAR(50)

);

CREATE TABLE cars(
car_id INT PRIMARY KEY,
driver_id INT UNIQUE,
CONSTRAINT fk_cars_drivers 
FOREIGN KEY (driver_id) 
REFERENCES drivers(driver_id)

);

Setup
Primary key

Foreign Key

One driver
per car
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CONSTRAINT fk_cars_drivers 
FOREIGN KEY (driver_id) 
REFERENCES drivers(driver_id)

Foreign Key

Primary Key

Foreign Key

Constraint 
Name

Referent Table
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Retrieving Related Data
Using Simple JOIN statements

Table 1 Table 2
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• Table relations are useful when combined with JOINS

• With JOINS we can get data from two tables simultaneously
• JOINS require at least two tables and a "join condition"

• Example:

Joins

SELECT * FROM table_a
JOIN table_b ON

table_b.common_column = table_a.common_column

Join Condition

Select from Tables
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• Report all peaks for "Rila" mountain.
• Report includes mountain's name, peak's name and also peak's elevation

• Peaks should be sorted by elevation descending

• Use database "Geography".

Problem: Peaks in Rila
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Solution: Peaks in Rila

SELECT m.mountain_range, p.peak_name, p.elevation 
FROM peaks AS p
JOIN mountains AS m ON m.id = p.mountain_id
WHERE m.mountain_range = 'Rila'
ORDER BY p.elevation DESC;

Cross Table Selection

Join Condition

Sort
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Cascade Operations
Cascade Delete/Update
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• Cascading allows when a change is made to certain entity, this change to apply 
to all related entities

Definition

orders order_items

Primary key Primary key
Foreign key

Cascade delete

order_id order_name

1 …

22 …

item_id order_id

4 1

24 22

87 1
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• CASCADE can be either DELETE or UPDATE.

• Use CASCADE DELETE when:
• The related entities are meaningless without the "main" one

• Do not use CASCADE DELETE when:
• You make "logical delete"

• You preserve history

• Keep in mind that in more complicated relations it won't work with circular references

CASCADE DELETE
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• Use CASCADE UPDATE when:
• The primary key is NOT identity (not auto-increment) and therefore it can be 

changed

• Best used with UNIQUE constraint

• Do not use CASCADE UPDATE when:
• The primary is identity (auto-increment)

• Cascading can be avoided using triggers or procedures

CASCADE UPDATE
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CREATE TABLE drivers(
driver_id INT PRIMARY KEY,
driver_name VARCHAR(50)

);

CREATE TABLE cars(
car_id INT PRIMARY KEY,
driver_id INT,
CONSTRAINT fk_car_driver FOREIGN KEY(driver_id)
REFERENCES drivers(driver_id) ON DELETE CASCADE

);

Foreign Key Delete Cascade

Table Drivers

Foreign Key

Table Cars
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CREATE TABLE drivers(
driver_id INT PRIMARY KEY,
driver_name VARCHAR(50)

);

CREATE TABLE cars(
car_id INT PRIMARY KEY,
driver_id INT,
CONSTRAINT fk_car_driver FOREIGN KEY(driver_id)
REFERENCES drivers(driver_id) ON UPDATE CASCADE

);

Foreign Key Update Cascade
Table Drivers

Foreign Key

Table Cars
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E/R Diagrams
Entity / Relationship Diagrams
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• Relational schema of a DB is the collection of:
• The schemas of all tables

• Relationships between the tables

• Any other database objects (e.g. constraints)

• The relational schema describes the structure of the database
• Doesn't contain data, but metadata

• Relational schemas are graphically displayed in Entity / Relationship 
diagrams (E/R Diagrams)

Relational Schema
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E/R Diagram

• Click on "Database" then select "Reverse Engineer"
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E/R Diagram
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E/R Diagram
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• We design databases by specification entities and their 
characteristics

• Two types of relations:

• One-to-many

• Many-to-many

• We visualize relations via E/R diagrams

Summary
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Chapter 7. 
Joins, Subqueries and Indices -

Data Retrieval and Performance
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JOINS
Gathering Data From Multiple Tables
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Data from Multiple Tables

• Sometimes you need data from several tables:

Employees
department_id department_name

3 Sales

4 Marketing

5 Purchasing

Departments

employee_name department_id department_name

Edward 3 Sales

employee_name department_id

Edward 3

John NULL
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Cartesian Product
• This will produce Cartesian product:

• The result:

SELECT last_name, name AS department_name
FROM employees, departments;

last_name department_name

Gilbert Engineering

Brown Engineering

… …

Gilbert Sales

Brown Sales
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Cartesian Product

• Each row in the first table is paired with all the rows in the second 
table
• When there is no relationship defined between the two tables

• Formed when:
• A join condition is omitted

• A join condition is invalid

• To avoid, always include a valid JOIN condition
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• JOINS – used to collect data from two or more tables

• Types:

JOINS

INNER JOIN LEFT JOIN

CROSS JOIN

RIGHT JOIN

OUTER 
(UNION) 
JOIN
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Tables

id name course_id

1 Alice 1

2 Michael 1

3 Caroline 2

4 David 5

5 Emma NULL

id name

1 HTML5

2 CSS3

3 JavaScript

4 PHP

5 MySQL
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▪ Produces a set of records which match in both tables

INNER JOIN

SELECT students.name, courses.name
FROM students
INNER JOIN courses 
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

David MySQL

Join Conditions
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▪ Matches every entry in left table regardless of match in the right

LEFT JOIN

SELECT students.name, courses.name
FROM students
LEFT JOIN courses 
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

David MySQL

Emma NULLJoin Conditions
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▪ Matches every entry in right table regardless of match in the left

RIGHT JOIN

SELECT students.name, courses.name
FROM students
RIGHT JOIN courses 
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

NULL JavaScript

NULL PHP

David MySQL

Join Conditions
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OUTER (FULL JOIN)

▪ Returns all records in both tables regardless of any match

▪ Less useful than INNER, LEFT or RIGHT JOINs and it's not 
implemented in MySQL

▪ We can use UNION of a LEFT and RIGHT JOIN
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UNION of LEFT and RIGHT JOIN

SELECT students.name, courses.name
FROM students
LEFT JOIN courses 
ON students.course_id = courses.id

UNION

SELECT students.name, courses.name
FROM students
RIGHT JOIN courses 
ON students.course_id = courses.id

students_name courses_name

Alice HTML5

Michael HTML5

Caroline CSS3

David MySQL

Emma NULL

NULL JavaScript

NULL PHP
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CROSS JOIN
▪ Produces a set of associated rows of two tables

▪ Multiplication of each row in the first table with each in 
second

▪ The result is a Cartesian product, when there's no condition in 
the WHERE clause

SELECT * FROM courses AS c
CROSS JOIN students AS s;

No Join Conditions
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Cross Join
id name course_id

1 Alice 1

2 Michael 1

3 Caroline 2

4 David 5

5 Emma NULL

id name

1 HTML5

2 CSS3

3 JavaScript

4 PHP

5 MySQL

Courses Students

course_id course_name student_id student_name

1 HTML5 1 Alice

1 HTML5 2 Michael

1 HTML5 3 Caroline

… … … …

Result
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Join Overview

Relation

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

18 Accounting

22 Engineering
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Join Overview: INNER JOIN

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

18 Accounting

22 Engineering
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Join Overview: LEFT JOIN

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

15 Shipping And 
Receiving

18 Accounting

22 Engineering

NULL NULL
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Join Overview: RIGHT JOIN

employee_name department_id

Sally 13

John 10

Michael 22

Bob 11

Robin 7

Jessica 15

department_id department_name

7 Executive

8 Sales

10 Marketing

12 HR

18 Accounting

22 Engineering
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Problem: Managers

• Get information about the first 5 managers in the “uni_ruse" database
• id

• full_name

• department_id

• department_name
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Solution: Managers

SELECT e.employee_id, CONCAT(first_name, " ", 
last_name) AS `full_name`, d.department_id, d.name
FROM employees AS e
RIGHT JOIN departments AS d
ON d.manager_id = e.employee_id 
ORDER BY e.employee_id LIMIT 5;
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Subqueries
Query Manipulation on Multiple Levels

☰

☰

☰
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Subqueries

• Subqueries – SQL query inside a larger one

• Can be nested in SELECT, INSERT, UPDATE, DELETE
• Usually added within a WHERE clause

SELECT * FROM students
WHERE course_id = 1;

id name course_id

1 Alice 1

2 Michael 1

Subquery
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Problem: Higher Salary 

• Count the number of employees who receive salary, higher than the average
• Use "uni_ruse" database

count

88

Table "employees"

employee_id first_name last_name …

216 Mike Seamans …

178 Barbara Moreland …

… … … …
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Solution: Higher Salary 

SELECT COUNT(e.employee_id) AS `count` 
FROM employees AS e
WHERE e.salary >
(
SELECT AVG(salary) AS 'average_salary' 
FROM employees
);
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Indices
Clustered and Non-Clustered Indices
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• Structures associated with a table or view that speeds retrieval of 
rows 
• Usually implemented as B-trees

• Indices can be built-in the table (clustered) or stored externally (non-
clustered)

• Adding and deleting records in indexed tables is slower!
• Indices should be used for big tables only (e.g. 50 000 rows)

Indices
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• Clustered index determine the order of data
• Very useful for fast execution of WHERE, ORDER BY and GROUP BY clauses

• Maximum 1 clustered index per table
• If a table has no clustered index, 

its data rows are stored in an 
unordered structure (heap)

Clustered Indices

Keys

Data ☰ ☰ ☰ ☰ ☰ ☰ ☰

100-1990-99 200-299
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Non-Clustered Indices

• Useful for fast retrieving a single record or a range of records
• Each key value entry has a pointer to the data row that contains the key value

• Maintained in a separate 

structure in the DB

Keys

Data ☰ ☰ ☰ ☰ ☰ ☰ ☰

100-1990-99 200-299

6587,65891885,1885 8052,8053Pointers
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CREATE INDEX
ix_users_first_name_last_name

ON users(first_name, last_name);

Indices Syntax

Table Name
Columns
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• Joins

• Subqueries are used to nest queries

• Indices improve SQL search performance if used properly

Summary

SELECT * FROM employees AS e
JOIN departments AS d ON

d.department_id = e.department_id
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Chapter 8. 
Functions and Triggers –

User-defined Functions, Procedures, 
Triggers and Transactions
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User-Defined Functions
Encapsulating custom logic
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User-Defined Functions

• Extend the functionality of a MySQL Server
• Modular programming – write once, call it any number of times

• Faster execution – doesn't need to be reparsed and reoptimized with each 
use

• Break out complex logic into shorter code blocks

• Functions can be:
• Scalar – return single value or NULL

• Table-Valued – return a table
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Problem: Count Employees by Town

• Write a function ufn_count_employees_by_town(town_name) that:

• Accepts town name as parameter

• Returns the count of employees in the database who live in that town
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Solution: Count Employees by Town

CREATE FUNCTION ufn_count_employees_by_town(town_name VARCHAR(20))
RETURNS DOUBLE 
BEGIN

DECLARE e_count DOUBLE;
SET e_count := (SELECT COUNT(employee_id) FROM employees AS e
INNER JOIN addresses AS a ON a.address_id = e.address_id
INNER JOIN towns AS t ON t.town_id = a.town_id
WHERE t.name = town_name);
RETURN e_count;

END

Function Name

Function Logic
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• Examples of expected output:

Result: Count Employees by Town

SELECT ufn_count_employees_by_town('Sofia'); 3

Employees
count

SELECT ufn_count_employees_by_town('Berlin'); 1

Function Call

SELECT ufn_count_employees_by_town(NULL); 0
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Stored Procedures
Sets of queries stored on DB Server
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• Stored procedures are logic removed from the application and placed 
on the database server

• Can greatly cut down traffic on the network

• Improve the security of your database server

• Separate data access routines from the business logic 

• Accessed by programs using different platforms and API's

Stored Procedures
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Creating Stored Procedures

• CREATE PROCEDURE

• Example:

DELIMITER $$
CREATE PROCEDURE usp_select_employees_by_seniority() 
BEGIN
SELECT * 
FROM employees
WHERE ROUND((DATEDIFF(NOW(), hire_date) / 365.25)) < 15;

END $$

Procedure Name

Procedure Logic
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• Executing a stored procedure by CALL

• DROP PROCEDURE

Executing and Dropping 
Stored Procedures

DROP PROCEDURE usp_select_employees_by_seniority;

CALL usp_select_employees_by_seniority();
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• To define a parameterized procedure use the syntax:

Defining Parameterized Procedures

CREATE PROCEDURE usp_procedure_name 
(parameter_1_name parameter_type,
parameter_2_name parameter_type,…)
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Parameterized Stored Procedures – Example

DELIMITER $$

CREATE PROCEDURE usp_select_employees_by_seniority(min_years_at_work INT)

BEGIN

SELECT first_name, last_name, hire_date,

ROUND(DATEDIFF(NOW(),DATE(hire_date)) / 365.25,0) AS 'years'

FROM employees

WHERE ROUND(DATEDIFF(NOW(),DATE(hire_date)) / 365.25,0) > min_years_at_work

ORDER BY hire_date;

END $$

CALL usp_select_employees_by_seniority(15);

Procedure Name

Procedure Logic

Usage
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Returning Values
CREATE PROCEDURE usp_add_numbers 

(first_number INT,

second_number INT,

OUT result INT)

BEGIN

SET result = first_number + second_number

END $$

DELIMITER ;

SET @answer=0;

CALL usp_add_numbers(5, 6,@answer);

SELECT @answer;

-- 11

Creating procedure

Executing procedure

Display results
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• Write a stored procedure that raises employees salaries by 
department name (as parameter) by 5%

• Use uni_ruse database

Problem: Employees Promotion
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Solution: Employees Promotion

CREATE PROCEDURE usp_raise_salaries(department_name varchar(50))

BEGIN

UPDATE employees e 

INNER JOIN departments AS d 

ON e.department_id = d.department_id 

SET salary = salary * 1.05

WHERE d.name = department_name;

END 
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• Procedure result for 'Sales' department: 

 

Result: Employees Promotion

employee_id salary

268 48 100.00

273 72 100.00

… …

Data before procedure call:

employee_id salary

268 50 505.00

273 75 705.00

… …

Data after procedure call:

CALL usp_raise_salaries('Sales');
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What is a Transaction?
Executing operations as a whole
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• Transaction is a sequence of actions (database operations) executed 
as a whole

• Either all of them complete successfully or none of the them

• Example of transaction

• A bank transfer from one account into another (withdrawal + deposit)

• If either the withdrawal or the deposit fails the whole operation is cancelled

Transactions
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Transactions: Lifecycle (Rollback)

Rollback

Read Write

WriteDurable 
starting 

state

Durable,
consistent,

ending state

Sequence
of reads and 

writes
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Transactions: Lifecycle (Commit)

Commit

Read Write

WriteDurable 
starting 

state

Durable,
consistent,

ending state

Sequence
of reads and 

writes
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• Transactions guarantee the consistency and the integrity of the 
database
• All changes in a transaction are temporary

• Changes are persisted when COMMIT is executed.

• At any time all changes can be canceled by ROLLBACK

• All of the operations are executed as a whole.

Transactions Behavior
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Checkpoints in games

Castle 1-1 Castle 1-2

DIE

SURVIVEMario
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What are Transactions?

STATE 1 STATE 2

ROLLBACK

COMMITQueries
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• Write a transaction  that raises an employee's salary by id only if the employee 
exists in the database
• If not, no changes should be made

• Use uni_ruse database

Problem: Employees Promotion By ID
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Solution: Employees Promotion

CREATE PROCEDURE usp_raise_salary_by_id(id int)

BEGIN

START TRANSACTION;

IF((SELECT count(employee_id) FROM employees WHERE employee_id like 

id)<>1) THEN

ROLLBACK;

ELSE

UPDATE employees AS e SET salary = salary + salary*0.05 

WHERE e.employee_id = id;

END IF; 

END
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• Modern DBMS servers have built-in transaction support
• Implement “ACID” transactions

• E.g. Oracle, MySQL, MS SQL Server, …

• ACID means:
• Atomicity

• Consistency 

• Isolation

• Durability

Transactions Properties
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Triggers
Maintaining the integrity of the data
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What Are Triggers?

• Triggers - small programs in the database itself, activated by database 
events application layer
• UPDATE, DELETE or INSERT queries

• Called in case of specific event

• We do not call triggers explicitly
• Triggers are attached to a table
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MySQL Types of Triggers
Before After

Event

Trigger

Event

Trigger
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• There are three different events that can be applied within a trigger:

Events

Events

UpdateInsert Delete
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Problem: Triggered

• Create a table deleted_employees with fields:
• employee_id – primary key 

• first_name, last_name, middle_name, job_title, deparment_id, salary

• Add a trigger to employees table that logs deleted employees into the 
deleted_employees table
• Use uni_ruse database 
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Solution: Triggered

CREATE TABLE deleted_employees(
employee_id INT PRIMARY KEY AUTO_INCREMENT,
first_name VARCHAR(20),
last_name VARCHAR(20),
middle_name VARCHAR(20),
job_title VARCHAR(50),
department_id INT,
salary DOUBLE 

);
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Solution: Triggered

CREATE TRIGGER tr_deleted_employees
AFTER DELETE
ON employees
FOR EACH ROW
BEGIN

INSERT INTO deleted_employees     
(first_name,last_name,middle_name,job_title,department_id,salary)

VALUES(OLD.first_name,OLD.last_name,OLD.middle_name,OLD.job_title,OL
D.department_id,OLD.salary);
END;

The OLD and NEW keywords allow you 
to access columns before/after trigger 

action
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• Trigger action result on DELETE:
• NOTE: Remove foreign key checks before trying to delete employees

• DO NOT submit foreign key restriction changes in the Judge System

Result: Triggered 

DELETE FROM employees WHERE employee_id IN (1);

Data in deleted_employees table:

employee_id first_name last_name …

1 Guy Gilbert …
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• We can optimize with User-defined Functions

• Transactions improve security and consistency

• Stored Procedures encapsulate repetitive logic

• Triggers execute before certain events on tables

Summary
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